On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation

Abstract

The phenomenological flow theory of higher-order strain gradient plasticity proposed by Fleck and Hutchinson (J. Mech. Phys. Solids, 2001) and then improved by Fleck and Willis (J. Mech. Phys. Solids, 2009) is used to investigate the surface-passivation problem and micro-scale plasticity. An extremum principle is stated for the theory involving one material length scale. To solve the initial boundary value problem, a numerical scheme based on the framework of variational constitutive updates is developed for the strain gradient plasticity theory. The main idea is that, in each incremental time step, the value of the effective plastic strain is obtained through the variation of a functional in regard to effective plastic strain, provided the displacement or deformation gradient. Numerical results for elasto-plastic foils under tension and bending, thin wires under torsion, are given by using the minimum principle and the numerical scheme. Implications for the role of dissipative gradient effect are explored for three non-proportional loading conditions: (1) stretch-passivation problem, (2) bending-passivation problem, and (3) torsion-passivation problem. The results indicate that, within the Fleck–Hutchinson–Willis theory, the dissipative length scale controls the strengthening size effect, i.e. the increase of initial yielding strength, while the surface passivation gives rise to an increase of strain hardening rate.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Fleck, N.A., Muller, G.M., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta. Met. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  2. 2.

    Liu, D., He, Y., Dunstan, D.J., et al.: Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys. Rev. Lett. 110, 244301 (2013)

    Article  Google Scholar 

  3. 3.

    Dunstan, D.J., Ehrler, B., Bossis, R., et al.: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103, 155501 (2009)

    Article  Google Scholar 

  4. 4.

    Liu, D., He, Y., Tang, X., et al.: Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Mater. 66, 406–409 (2012)

    Article  Google Scholar 

  5. 5.

    Liu, D., He, Y., Shen, L., et al.: Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Mater. Sci. Eng. A-Struct. 647, 84–90 (2015)

    Article  Google Scholar 

  6. 6.

    Ehrler, B., Hou, X.D., Zhu, T.T., et al.: Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 88, 3043–3050 (2008)

    Article  Google Scholar 

  7. 7.

    Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  8. 8.

    Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  Google Scholar 

  9. 9.

    Stelmashenko, N., Walls, M., Brown, L., et al.: Microindentations on W and Mo oriented single crystals: an STM study. Acta. Met. Mater. 41, 2855–2865 (1993)

    Article  Google Scholar 

  10. 10.

    Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  11. 11.

    Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  12. 12.

    Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  13. 13.

    Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater-T. ASME. 106, 326 (1984)

    Article  Google Scholar 

  14. 14.

    Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    MATH  Article  Google Scholar 

  15. 15.

    Hutchinson, J.W.: Generalizing J(2) flow theory: fundamental issues in strain gradient plasticity. Acta. Mech. Sinica. 28, 1078–1086 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier. J. Mech. Phys. Solids. 57, 1045–1057 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory-Part I: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Gudmundson, P., Dahlberg, C.F.O.: Isotropic strain gradient plasticity model based on self-energies of dislocations and the Taylor model for plastic dissipation. Int. J. Plast. 121, 1–20 (2019)

    Article  Google Scholar 

  20. 20.

    Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int. J. Plast. 21, 2297–2318 (2005)

    MATH  Article  Google Scholar 

  21. 21.

    Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations. J. Mech. Phys. Solids. 53, 1624–1649 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Gurtin, M.E.: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Nix, W.D., Gao, H.J.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    MATH  Article  Google Scholar 

  24. 24.

    Gao, H., Huang, Y., Nix, W.D., et al.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids. 47, 1239–1263 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Kuroda, M., Tvergaard, V.: An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. Int. J. Plast. 26, 507–515 (2010)

    MATH  Article  Google Scholar 

  26. 26.

    Chen, S.H., Wang, T.C.: A new hardening law for strain gradient plasticity. Acta Mater. 48, 3997–4005 (2000)

    Article  Google Scholar 

  27. 27.

    Voyiadjis, G.Z., Song, Y.: Strain gradient continuum plasticity theories: theoretical, numerical and experimental investigations. Int. J. Plast. 121, 21–75 (2019)

    Article  Google Scholar 

  28. 28.

    Evans, A.G., Hutchinson, J.W.: A critical assessment of theories of strain gradient plasticity. Acta Mater. 57, 1675–1688 (2009)

    Article  Google Scholar 

  29. 29.

    Gurtin, M.E., Fried, E., Anand, L.: The mechanics and thermodynamics of continua. Cambridge Univ Press, Cambridge (2009)

    Google Scholar 

  30. 30.

    Mühlhaus, H.B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Fleck, N.A., Willis, J.R.: Strain gradient plasticity: energetic or dissipative? Acta. Mech. Sinica. 31, 465–472 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Xiang, Y., Vlassak, J.J.: Bauschinger and size effects in thin-film plasticity. Acta Mater. 54, 5449–5460 (2006)

    Article  Google Scholar 

  35. 35.

    Anand, L., Gurtin, M.E., Lele, S.P., et al.: A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results. J. Mech. Phys. Solids 53, 1789–1826 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Fredriksson, P., Gudmundson, P.: Size-dependent yield strength of thin films. Int. J. Plast. 21, 1834–1854 (2005)

    MATH  Article  Google Scholar 

  37. 37.

    Niordson, C.F., Legarth, B.N.: Strain gradient effects on cyclic plasticity. J. Mech. Phys. Solids 58, 542–557 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Bardella, L.: Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int. J. Eng. Sci. 48, 550–568 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Martinez-Paneda, E., Niordson, C.F., Bardella, L.: A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int. J. Solids Struct. 96, 288–299 (2016)

    Article  Google Scholar 

  41. 41.

    Hua, F., Liu, D., He, Y.: Modelling the effect of surface passivation within higher-order strain gradient plasticity: the case of wire torsion. Eur. J. Mech. A-Solid. 78, 103855 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Chiricotto, M., Giacomelli, L., Tomassetti, G.: Dissipative scale effects in strain-gradient plasticity: the case of simple shear. Siam. J. Appl. Math. 76, 688–704 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Panteghini, A., Bardella, L.: On the role of higher-order conditions in distortion gradient plasticity. J. Mech. Phys. Solids 118, 293–321 (2018)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Niordson, C.F., Hutchinson, J.W.: On lower order strain gradient plasticity theories. Eur. J. Mech. A-Solid. 22, 771–778 (2003)

    MATH  Article  Google Scholar 

  45. 45.

    Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A-Math. Phys. 470, 20140267 (2014)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Shen, Y.L., Suresh, S., He, M.Y., et al.: Stress evolution in passivated thin films of Cu on silica substrates. J. Mater. Res. 13, 1928–1937 (1998)

    Article  Google Scholar 

  48. 48.

    Voyiadjis, G.Z., Song, Y.: Effect of passivation on higher order gradient plasticity models for non-proportional loading: energetic and dissipative gradient components. Philos. Mag. 97, 318–345 (2017)

    Article  Google Scholar 

  49. 49.

    Fredriksson, P., Gudmundson, P.: Modelling of the interface between a thin film and a substrate within a strain gradient plasticity framework. J. Mech. Phys. Solids 55, 939–955 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)

    MATH  Article  Google Scholar 

  51. 51.

    Smyshlyaev, V.P., Fleck, N.A.: The role of strain gradients in the grain size effect for polycrystals. J. Mech. Phys. Solids 44, 465–495 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Zhang, X., Aifantis, K.: Interpreting the internal length scale in strain gradient plasticity. Rev. Adv. Mater. Sci. 41, 72–83 (2015)

    Google Scholar 

  53. 53.

    Liu, D., Dunstan, D.J.: Material length scale of strain gradient plasticity: a physical interpretation. Int. J. Plast. 98, 156–174 (2017)

    Article  Google Scholar 

  54. 54.

    Idiart, M.I., Deshpande, V.S., Fleck, N.A., et al.: Size effects in the bending of thin foils. Int. J. Eng. Sci. 47, 1251–1264 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Qiao, L.: Variational constitutive updates for strain gradient isotropic plasticity. Massachusetts Institute of Technology, Cambridge (2009)

    Google Scholar 

  56. 56.

    Idiart, M.I., Fleck, N.A.: Size effects in the torsion of thin metal wires. Model. Simul. Mater. Sci. 18, 015009 (2010)

    Article  Google Scholar 

  57. 57.

    Fleck, N.A., Hutchinson, J.W., Willis, J.R.: Guidelines for constructing strain gradient plasticity theories. J. Appl. Mech. 82, 071002 (2015)

    Article  Google Scholar 

  58. 58.

    Moreau, P., Raulic, M., P’ng, K.M.Y., et al.: Measurement of the size effect in the yield strength of nickel foils. Philos. Mag. Lett. 85, 339–343 (2005)

    Article  Google Scholar 

  59. 59.

    Motz, C., Schoberl, T., Pippan, R.: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005)

    Article  Google Scholar 

  60. 60.

    Liu, D., Zhang, X., Li, Y., et al.: Critical thickness phenomenon in single-crystalline wires under torsion. Acta Mater. 150, 213–223 (2018)

    Article  Google Scholar 

  61. 61.

    Guo, S., He, Y., Lei, J., et al.: Individual strain gradient effect on torsional strength of electropolished microscale copper wires. Scripta Mater. 130, 124–127 (2017)

    Article  Google Scholar 

  62. 62.

    Danas, K., Deshpande, V.S., Fleck, N.A.: Size effects in the conical indentation of an elasto-plastic solid. J. Mech. Phys. Solids 60, 1605–1625 (2012)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11702103 and 11972168), the Young Elite Scientist Sponsorship Program by CAST (Grant 2016QNRC001), and the Fundamental Research Funds for the Central Universities (Grant HUST 2018KFYYXJJ008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dabiao Liu.

Appendix

Appendix

Three material length scales can be introduced to the Fleck–Hutchinson–Willis theory as seen in Eq. (10). We restrict attention to the simplest model, containing a single material length scale. Following Danas et al. [62], we introduce a particular choice for the relative magnitude of the length scales \(\ell_{I}\) by allowing

$$\ell_{1} = \sqrt {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}} \ell ,\;\;\ell_{2} = \sqrt {{1 \mathord{\left/ {\vphantom {1 6}} \right. \kern-0pt} 6}} \ell \;\;{\text{and}}\;\;\ell_{3} = {\ell \mathord{\left/ {\vphantom {\ell 2}} \right. \kern-0pt} 2}.$$
(44)

With this choice, one can write the length scales \(\ell_{I}\) in terms of a single length scale \(\ell\).

For the cases of foil tension and bending, the generalized effective plastic strain rate Eq. (10) is written as

$$\dot{E}_{\text{P}} = \sqrt {\dot{\varepsilon }_{\text{P}}^{2} + \left( {\tfrac{1}{2}\ell_{1}^{2} + \tfrac{8}{3}\ell_{3}^{2} } \right)\dot{\varepsilon }_{\text{P}}^{{{\prime }2}} } ,$$
(45)

where the second material length parameter \(\ell_{2}\) does not enter the expression. By (44), Eq. (45) is reduced to be

$$\dot{E}_{\text{P}} = \sqrt {\dot{\varepsilon }_{\text{P}}^{2} + \ell^{2} \dot{\varepsilon }_{\text{P}}^{{{\prime }2}} } .$$
(46)

In Eq. (22), the coefficients read

$$\omega_{1} = 1, \, \omega_{2} = \ell^{2} .$$
(47)

For the case of wire torsion, the generalized effective plastic strain rate Eq. (10) is expressed as

$$\dot{E}_{\text{P}} = \sqrt {c_{1} \dot{\varepsilon }_{\text{P}}^{2} + c_{2} \dot{\varepsilon }_{\text{P}} \dot{\varepsilon }_{\text{P}}^{{\prime }} + c_{3} \dot{\varepsilon }_{\text{P}}^{{{\prime }2}} } ,$$
(48)

with

$$\left\{ \begin{aligned} & c_{1} = 1 + \left( {\tfrac{1}{2}\ell_{1}^{2} + 4\ell_{2}^{2} } \right)r^{ - 2} \hfill \\ & c_{2} = \left( { - \ell_{1}^{2} + 4\ell_{2}^{2} } \right)r^{ - 1} \hfill \\ & c_{3} = \left( {\tfrac{1}{2}\ell_{1}^{2} + 4\ell_{2}^{2} } \right) \hfill \\ \end{aligned} \right.,$$
(49)

where \(\ell_{3}\) is not involved in the expression. By (44), Eq. (48) is reduced to be

$$\dot{E}_{\text{P}} = \sqrt {\left( {1 + \ell^{2} r^{ - 2} } \right)\dot{\varepsilon }_{\text{P}}^{2} + \ell^{2} \dot{\varepsilon }_{\text{P}}^{{{\prime }2}} } .$$
(50)

In Eq. (22), the coefficients become

$$\omega_{1} = 1 + \ell^{2} r^{ - 2} , \, \omega_{2} = \ell^{2} .$$
(51)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hua, F., Liu, D. On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation. Acta Mech. Sin. (2020). https://doi.org/10.1007/s10409-020-00965-0

Download citation

Keywords

  • Strain gradient plasticity
  • Dissipative length scale
  • Passivation
  • Size effect
  • Non-proportional loading