New method for controlling minimum length scales of real and void phase materials in topology optimization

Abstract

Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability. And it also is a challenge area of research due to serious conflicts of both the solid and the void phase element densities in phase mixing domains of the topologies obtained by existing methods. Moreover, there is few work dealing with controlling distinct minimum feature length scales of real and void phase materials used in topology designs. A new method for solving the minimum length scale controlling problem of real and void material phases, is proposed. Firstly, we introduce two sets of coordinating design variable filters for these two material phases, and two distinct smooth Heaviside projection functions to destroy the serious conflicts in the existing methods (e.g. Guest Comput Methods Appl Mech Eng 199(14):123–135, 2009). Then, by introducing an adaptive weighted 2-norm aggregation constraint function, we construct a coordinating topology optimization model to ensure distinct minimum length scale controls of real and void phase materials for the minimum compliance problem. By adopting a varied volume constraint limit scheme, this coordinating topology optimization model is transferred into a series of coordinating topology optimization sub-models so that the structural topology configuration can stably and smoothly changes during an optimization process. The structural topology optimization sub-models are solved by the method of moving asymptotes (MMA). Then, the proposed method is extended to the compliant mechanism design problem. Numerical examples are given to demonstrate that the proposed method is effective and can obtain a good 0/1 distribution final topology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Bendsøe, M.P., Sigmund, O.: Topology optimization: theory, methods and applications. Springer, Berlin (2003)

    Google Scholar 

  3. 3.

    Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–390 (2001)

    Article  Google Scholar 

  4. 4.

    Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Yoely, Y.M., Amir, O., Hanniel, I.: Topology and shape optimization with explicit geometric constraints using a spline-based representation and a fixed grid. Procedia Manuf. 21, 189–196 (2018)

    Article  Google Scholar 

  7. 7.

    Sun, J.L., Tian, Q., Hu, H.Y., et al.: Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE–ANCF. Mech. Mach. Theory 129, 80–105 (2018)

    Article  Google Scholar 

  8. 8.

    Suzuki, K., Kikuchi, N.: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93(3), 291–318 (1991)

    MATH  Article  Google Scholar 

  9. 9.

    Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  10. 10.

    Zhou, M., Rozvany, G.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89(1–3), 309–336 (1991)

    Article  Google Scholar 

  11. 11.

    Allaire, G., Jouve, F., Toader, A.M.: A level-set method for shape optimization. C.R. Math. 334(12), 1125–1130 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Guo, X., Zhang, W., Zhong, W.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)

    Article  Google Scholar 

  14. 14.

    Rong, J., Xie, Y., Yang, X.: An improved method for evolutionary structural optimisation against buckling. Comput. Struct. 79(3), 253–263 (2001)

    Article  Google Scholar 

  15. 15.

    Xu, B., Zhao, L., Xie, Y.M., et al.: Topology optimization of continuum structures with uncertain-but-bounded parameters for maximum non-probabilistic reliability of frequency requirement. J. Vib. Control 23(16), 2557–2566 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Nabaki, K., Shen, J.H., Huang, X.D.: Evolutionary topology optimization of continuum structures considering fatigue failure. Mater. Des. 166, 107586 (2019)

    Article  Google Scholar 

  17. 17.

    Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81(8), 081009 (2014)

    Article  Google Scholar 

  18. 18.

    Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Chang, K.H., Tang, P.S.: Integration of design and manufacturing for structural shape optimization. Adv. Eng. Softw. 32(7), 555–567 (2001)

    MATH  Article  Google Scholar 

  21. 21.

    Li, F., Liu, J., Wen, G., et al.: Extending SORA method for reliability-based design optimization using probability and convex set mixed models. Struct. Multidiscip. Optim. 59(4), 1163–1179 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Zhang, Y., Liu, S.: Design of conducting paths based on topology optimization. Int. J. Heat Mass Transf. 44(10), 1217–1227 (2008)

    Article  Google Scholar 

  23. 23.

    Zhu, J.H., Guo, W.J., Zhang, W.H., et al.: Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct. Multidiscip. Optim. 56, 21–45 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Harzheim, L., Graf, G.: Topshape: an attempt to create design proposals including manufacturing constraints. Int. J. Vehicle Des. 28(4), 389–409 (2002)

    Article  Google Scholar 

  25. 25.

    Harzheim, L., Graf, G.: A review of optimization of cast parts using topology optimization. Struct. Multidiscip. Optim. 31(5), 388–399 (2006)

    Article  Google Scholar 

  26. 26.

    Andreassen, E., Lazarov, B.S., Sigmund, O.: Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69(1), 1–10 (2014)

    Article  Google Scholar 

  27. 27.

    Zhang, W.H., Zhou, L.: Topology optimization of self-supporting structures with polygon features for additive manufacturing. Comput. Methods Appl. Mech. Eng. 334, 56–78 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Froes, F.H., Boyer, R., Dutta, B.: Additive manufacturing for aerospace applications-part I. Adv. Mater. Process. 175(5), 36–40 (2017)

    Google Scholar 

  29. 29.

    Liu, J.K., Gaynor, A.T., Chen, S.K., et al.: Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 57(6), 2457–2483 (2018)

    Article  Google Scholar 

  30. 30.

    Zhang, K.Q., Cheng, G.D., Xu, L.: Topology optimization considering overhang constraint in additive manufacturing. Comput. Struct. 212, 86–100 (2019)

    Article  Google Scholar 

  31. 31.

    Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Guest, J.K.: Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1–4), 123–135 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Almeida, S.R.M., Paulino, G.H., Silva, E.C.N.: A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct. Multidiscip. Optim. 39(4), 359–371 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  35. 35.

    Sigmund, O.: Manufacturing tolerant topology optimization. Acta. Mech. Sin. 25(2), 227–239 (2009)

    MATH  Article  Google Scholar 

  36. 36.

    Guest, J.K.: Imposing maximum length scale in topology optimization. Struct. Multidiscip. Optim. 37(5), 463–473 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Guest, J.K., Asadpoure, A., Ha, S.H.: Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct. Multidiscip. Optim. 44(4), 443–453 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Schevenels, M., Lazarov, B.S., Sigmund, O.: Robust topology optimization accounting for spatially varying manufacturing errors. Comput. Methods Appl. Mech. Eng. 200(49–52), 3613–3627 (2011)

    MATH  Article  Google Scholar 

  39. 39.

    Svanberg, K., Svärd, H.: Density filters for topology optimization based on the Pythagorean means. Struct. Multidiscip. Optim. 48(5), 859–875 (2013)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Lazarov, B.S., Wang, F., Sigmund, O.: Length scale and manufacturability in density-based topology optimization. Arch. Appl. Mech. 86(1–2), 189–218 (2016)

    Article  Google Scholar 

  41. 41.

    Liu, J., Ma, Y.: A survey of manufacturing oriented topology optimization methods. Adv. Eng. Softw. 100, 161–175 (2016)

    Article  Google Scholar 

  42. 42.

    Van, D.V.E., Maas, R., Ayas, C., et al.: Continuous front propagation-based overhang control for topology optimization with additive manufacturing. Struct. Multidiscip. Optim. 57(5), 2075–2091 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Vatanabe, S.L., Lippi, T.N., De, L.C.R., et al.: Topology optimization with manufacturing constraints: a unified projection-based approach. Adv. Eng. Softw. 100, 97–112 (2016)

    Article  Google Scholar 

  44. 44.

    Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43(6), 767–784 (2011)

    MATH  Article  Google Scholar 

  45. 45.

    Zhou, M., Lazarov, B.S., Wang, F., et al.: Minimum length scale in topology optimization by geometric constraints. Comput. Methods Appl. Mech. Eng. 293, 266–282 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Carstensen, J.V., Guest, J.K.: Projection-based two-phase minimum and maximum length scale control in topology optimization. Struct. Multidiscip. Optim. 58(5), 1845–1860 (2018)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26–27), 3443–3459 (2001)

    MATH  Article  Google Scholar 

  48. 48.

    Petersson, J., Sigmund, O.: Slope constrained topology optimization. Int. J. Numer. Methods Eng. 41(8), 1417–1434 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  50. 50.

    Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41(4), 495–505 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Rong, J.H., Xiao, T.T., Yu, L.H., et al.: Continuum structural topological optimizations with stress constraints based on an active constraint technique. Int. J. Numer. Methods Eng. 108(4), 326–360 (2016)

    MathSciNet  Article  Google Scholar 

  52. 52.

    Chu, S., Gao, L., Xiao, M.: Stress-based multi-material topology optimization of compliant mechanisms. Int. J. Numer. Methods Eng. 113(7), 1021–1044 (2018)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Pereira, A.A., Cardoso, E.L.: On the influence of local and global stress constraint and filtering radius on the design of hinge-free compliant mechanisms. Struct. Multidiscip. Optim. 58(2), 641–655 (2018)

    Article  Google Scholar 

  54. 54.

    Silva, G.A.D., Beck, A.T., Sigmund, O.: Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput. Methods Appl. Mech. Eng. 344, 512–537 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Rong, J.H., Tang, Z.L., Xie, Y.M., et al.: Topological optimization design of structures under random excitations using SQP method. Eng. Struct. 56, 2098–2106 (2013)

    Article  Google Scholar 

  57. 57.

    Buhl, T., Pedersen, C.B., Sigmund, O.: Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscip. Optim. 19(2), 93–104 (2000)

    Article  Google Scholar 

  58. 58.

    Li, L., Khandelwal, K.: Volume preserving projection filters and continuation methods in topology optimization. Eng. Struct. 85, 144–161 (2015)

    Article  Google Scholar 

  59. 59.

    Rojas-Labanda, S., Stolpe, M.: Automatic penalty continuation in structural topology optimization. Struct. Multidiscip. Optim. 52(6), 1205–1221 (2015)

    MathSciNet  Article  Google Scholar 

  60. 60.

    Watada, R., Ohsaki, M.: Continuation approach for investigation of non-uniqueness of optimal topology for minimum compliance. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, (2009)

  61. 61.

    Watada, R., Ohsaki, M., Kanno, Y.: Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance. Struct. Multidiscip. Optim. 43(4), 459–471 (2011)

    MATH  Article  Google Scholar 

  62. 62.

    Stolpe, M., Svanberg, K.: On the trajectories of penalization methods for topology optimization. Struct. Multidiscip. Optim. 21(2), 128–139 (2001)

    Article  Google Scholar 

  63. 63.

    Rong, J., Yi, J.: A structural topological optimization method for multi-displacement constraints and any initial topology configuration. Acta. Mech. Sin. 26(5), 735–744 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Rong, J.H., Yu, L., Rong, X.P., et al.: A novel displacement constrained optimization approach for black and white structural topology designs under multiple load cases. Struct. Multidiscip. Optim. 56(4), 865–884 (2017)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Rong, J.H., Liu, X.H., Yi, J.J., et al.: An efficient structural topological optimization method for continuum structures with multiple displacement constraints. Finite Elem. Anal. Des. 47(8), 913–921 (2011)

    Article  Google Scholar 

  66. 66.

    Luo, Z., Chen, L., Yang, J., et al.: Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct. Multidiscip. Optim. 30(2), 142–154 (2005)

    Article  Google Scholar 

  67. 67.

    Wang, L.P., Jiang, Y., Li, T.M.: Analytical compliance modeling of serial flexure-based compliant mechanism under arbitrary applied load. Int. J. Mech. Eng. 30(4), 951–962 (2017)

    Google Scholar 

  68. 68.

    Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 50(6), 1175–1196 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11772070 and 11372055) and the Hunan Provincial Natural Science Foundation of China (2019JJ40296). Very thanks reviewers for their comments on the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianhua Rong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rong, X., Rong, J., Zhao, S. et al. New method for controlling minimum length scales of real and void phase materials in topology optimization. Acta Mech. Sin. (2020). https://doi.org/10.1007/s10409-020-00932-9

Download citation

Keywords

  • Structural topology optimization
  • Minimum length scale
  • Manufacturability
  • Coordinating density filter
  • Heaviside projections
  • Void phase