Skip to main content
Log in

Buckling-controlled two-way shape memory effect in a ring-shaped bilayer

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMPs) usually have a one-way shape memory effect. In this paper, an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures. By designing specific thermomechanical processes, the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating. Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling. This method was validated by finite element simulation. We experimentally investigated the influence of pre-strain on buckling, and it was found that both the buckling occurrence and recovery temperature vary with pre-strain. Furthermore, considering a ring-shaped SMP–SMP bilayer structure, finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior. The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio. We made a theoretical analysis that accorded well with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, F., Urban, M.W.: Recent advances and challenges in designing stimuliresponsive polymers. Prog. Polym. Sci. 35, 3–23 (2010)

    Article  Google Scholar 

  2. Leng, J.S., Lan, X.Y., Liu, J., et al.: Shape memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)

    Article  Google Scholar 

  3. Zhao, Q., Qi, H.J., Xie, T.: Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79–120 (2015)

    Article  Google Scholar 

  4. Yang, H., Wang, Z.D., Guo, Y.F.: A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers. Sci. China Phys. Mech. 59, 634601 (2016)

    Article  Google Scholar 

  5. Chao, Y., Guo, Z.K., Qian, H.K.: A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy. Acta Mech. Sin. 33, 619–634 (2017)

    Article  MathSciNet  Google Scholar 

  6. David, S., Albert, F.S., Francesc, F., et al.: Improving of mechanical and shape-memory properties in hyperbranched epoxy shape-memory polymers. Shap Mem. Superelasticity 2, 239–246 (2016)

    Article  Google Scholar 

  7. Kuder, I.K., Arrieta, A.F., Raither, W.E., et al.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33–55 (2013)

    Article  Google Scholar 

  8. Liu, Y.J., Du, H.Y., Liu, L.W., et al.: Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 23, 23001–23022 (2014)

    Article  Google Scholar 

  9. Vivek, T.R., Jayanth, S.K., Anjana, J.: Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 7, 519–548 (2017)

    Article  Google Scholar 

  10. Chen, H.M., Wang, L., Zhou, S.B.: Recent progress in shape memory polymers for biomedical applications. Chin. J. Polym. Sci. 36, 905–917 (2018)

    Article  Google Scholar 

  11. Ren, M., Liu, Z., Zheng, Q., et al.: Mechanical buckling induced periodic kinking/stripe microstructures in mechanically peeled graphite flakes from HOPG. Acta Mech. Sin. 31, 494–499 (2015)

    Article  Google Scholar 

  12. Kaojin, W., Satu, S., Zhu, X.X.: A mini review: shape memory polymers for biomedical applications. Front. Chem. Sci. Eng. 11, 143–153 (2017)

    Article  Google Scholar 

  13. Yin, J., Chen, X., Sheinman, I.: Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470–1484 (2009)

    Article  Google Scholar 

  14. Kim, B.K., Lee, J.S., Lee, Y.M., et al.: Shape memory behavior of amorphous polyurethanes. J. Macromol. Sci. B. 40, 1179–1191 (2001)

    Article  Google Scholar 

  15. Cho, J.W., Kim, J.W., Jung, Y.C., et al.: Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 26, 412–416 (2010)

    Article  Google Scholar 

  16. Xie, T., Rousseu, I.A.: Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50, 1852–1856 (2009)

    Article  Google Scholar 

  17. Leng, J.S., Wu, X.L., Liu, Y.J.: Effect of a linear monomer on the thermomechanical properties of epoxy shape memory polymer. Smart Mater. Struct. 18, 7556–7579 (2009)

    Google Scholar 

  18. Leng, J.S., Xie, F., Wu, X.L., et al.: Effect of the gamma-radiation on the properties of epoxy-based shape memory polymers. J. Intel. Mat. Syst. Struct. 25, 1256–1263 (2014)

    Article  Google Scholar 

  19. Biju, R., Gouri, C., Nair, C.P.R.: Shape memory polymers based on cyanate esterepoxy-poly (tetramethyleneoxide) co-reacted system. Eur. Polym. J. 48, 499–511 (2012)

    Article  Google Scholar 

  20. Xie, F., Huang, L.N., Liu, Y.J., et al.: Synthesis and characterization of high temperature cyanate-based shape memory polymers with functional polybutadiene/acrylonitrile. Polymer 55, 5873–5879 (2014)

    Article  Google Scholar 

  21. Xiao, X.L., Kong, D.Y., Qiu, X.Y., et al.: Shape memory polymers with adjustable high glass transition temperatures. Macromolecules 48, 3582–3589 (2015)

    Article  Google Scholar 

  22. Xiao, X.L., Kong, D.Y., Qiu, X.Y., et al.: Shape memory polymers with high and low temperature resistant properties. Sci. Rep. 5, 14137 (2015)

    Article  Google Scholar 

  23. Harrison, C., Stafford, C.M., Zhang, W., et al.: Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85, 4016–4018 (2004)

    Article  Google Scholar 

  24. Sun, Y., Choi, W.M., Jiang, H., et al.: Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006)

    Article  Google Scholar 

  25. Khang, D.Y., Rogers, J.A.: A stretchable form of single-crystal silicon for high performance electronics on rubber substrates. Science 311, 208–212 (2014)

    Article  Google Scholar 

  26. Bowden, N., Brittain, S., Evans, A.G., et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  Google Scholar 

  27. Xie, T., Xiao, X., Li, J., et al.: Encoding localized strain history through wrinkle based structural colors. Adv. Mater. 22, 4390–4394 (2010)

    Article  Google Scholar 

  28. Arash, S., Koosha, A.: Buckling analysis of functionally graded plates partially resting on elastic foundation using the differential quadrature element method. Acta Mech. Sin. 35, 174–189 (2019)

    Article  MathSciNet  Google Scholar 

  29. Chen, Z.B., Kim, Y.Y., Krishnaswamy, S.: Anisotropic wrinkle formation on shape memory polymer substrates. J. Appl. Phys. 112, 124319 (2012)

    Article  Google Scholar 

  30. Ye, H.L., Wang, W.W., Chen, N., et al.: Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta Mech. Sin. 32, 649–658 (2016)

    Article  MathSciNet  Google Scholar 

  31. Song, W.B., Wang, L.Y., Wang, Z.D.: Synthesis and thermomechanical research of shape memory epoxy systems. Mater. Sci. Eng. A 529, 29–34 (2011)

    Article  Google Scholar 

  32. Song, W.B., Wang, Z.D.: Characterization of viscoelastic behavior of shape memory epoxy systems. J. Appl. Polym. Sci. 128, 199–205 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant 11272044) and the Fundamental Research Funds for the Central Universities (Grant 2018JBM305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liang, X. & Song, W. Buckling-controlled two-way shape memory effect in a ring-shaped bilayer. Acta Mech. Sin. 35, 1217–1225 (2019). https://doi.org/10.1007/s10409-019-00888-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00888-5

Keywords

Navigation