Skip to main content
Log in

Numerical study on shock-accelerated heavy gas cylinders with diffusive interfaces

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Interactions of shock waves and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluid mixing, and circulation generation. Navier–Stokes equations are solved in the present work to simulate the complex multi-fluid flow. A fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by numerical results. Cylinders with similar geometric scale but different diffusion interface have significant similarities in hydrodynamic characteristics, including the interface morphology, shock focusing, and molecular mixing, as well as circulation deposition. For cases with more severe interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface significantly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface evolution features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnett, W.D., Bahcall, J.N., Kirshner, R.P., et al.: Supernova 1987A. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)

    Article  Google Scholar 

  3. Lindl, J.D., Mccrory, R.L., Campbell, E.M.: Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992)

    Article  Google Scholar 

  4. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (2012)

    Article  Google Scholar 

  5. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 3, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  6. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)

    Article  Google Scholar 

  7. Rudinger, G., Somers, L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960)

    Article  MATH  Google Scholar 

  8. Haas, J.F., Sturtevan, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  9. Capuano, M., Bogey, C., Spelt, P.D.M.: Simulations of viscous and compressible gas–gas flows using high-order finite difference schemes. J. Comput. Phys. 361, 56–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)

    Article  Google Scholar 

  11. Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput. Fluids 146, 105–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yoo, Y.L., Sung, H.G.: Numerical investigation of an interaction between shock waves and bubble in a compressible multiphase flow using a diffuse interface method. Int. J. Heat Mass Transf. 127, 210–221 (2018)

    Article  Google Scholar 

  13. Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502 (2003)

    Article  Google Scholar 

  14. Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock–bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006)

    Article  Google Scholar 

  15. Zhu, Y., Yang, Z., Pan, Z., et al.: Numerical investigation of shock-SF6 bubble interaction with different mach numbers. Comput. Fluids 177, 78–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zeng, W., Pan, J., Ren, Y., et al.: Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface. Acta Mech. Sin. 34, 855–870 (2018)

    Article  MathSciNet  Google Scholar 

  17. Si, T., Zhai, Z., Luo, X.: Interaction of strong converging shock wave with SF6 gas bubble. Sci. China Phys. Mech. 61, 064711 (2018)

    Article  Google Scholar 

  18. Ou, J., Ding, J., Luo, X., et al.: Effects of Atwood number on shock focusing in shock–cylinder interaction. Exp. Fluids 59, 29 (2018)

    Article  Google Scholar 

  19. Zhai, Z., Si, T., Zou, L., et al.: Jet formation in shock-heavy gas bubble interaction. Acta Mech. Sin. 29, 24–35 (2013)

    Article  Google Scholar 

  20. Jacobs, J.W.: Shock-induced mixing of a light-gas cylinder. J. Fluid Mech. 234, 629–649 (1992)

    Article  Google Scholar 

  21. Tomkins, C., Kumar, S., Orlicz, G., et al.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)

    Article  MATH  Google Scholar 

  22. Shankar, S.K., Kawai, S., Lele, S.K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011)

    Article  Google Scholar 

  23. Zou, L., Liao, S., Liu, C., et al.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 297–319 (2016)

    Article  Google Scholar 

  24. Yang, J., Kubota, T., Zukoski, E.E.: Model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994)

    Article  MATH  Google Scholar 

  25. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)

    Article  Google Scholar 

  26. Gupta, S., Zhang, S., Zabusky, N.J.: Shock interaction with a heavy gas cylinder: emergence of vortex, bilayers and vortex-accelerated baroclinic circulation generation. Laser Part. Beams 21, 443–448 (2003)

    Article  Google Scholar 

  27. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–reaction problems. J. Comput. Phys. 201, 61–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., et al.: A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Guan, B. & Wang, G. Numerical study on shock-accelerated heavy gas cylinders with diffusive interfaces. Acta Mech. Sin. 35, 750–762 (2019). https://doi.org/10.1007/s10409-019-00867-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00867-w

Keywords

Navigation