Skip to main content
Log in

Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The linear and non-linear free vibrations of a spinning piezoelectric beam are studied by considering geometric nonlinearities and electromechanical coupling effect. The non-linear differential equations of the spinning piezoelectric beam governing two transverse vibrations are derived by using transformation of two Euler angles and the extended Hamilton principle, wherein an additional piezoelectric coupling term and different linear terms are present in contrast to the traditional shaft model. Linear frequencies are obtained by solving the standard eigenvalues of the linearized system directly, and the non-linear frequencies and non-linear complex modes are achieved by using the method of multiple scales. For free vibrations analysis of a spinning piezoelectric beam, the non-linear modal motions are investigated as forward and backward precession with different spinning speeds. The responses to the initial conditions for this gyroscopic system are studied and a beat phenomenon is found, which are then validated by numerical simulation. The influences of some parameters such as electrical resistance, rotary inertia and spinning speeds to the non-linear dynamics of a spinning piezoelectric beam are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang, J.S., Fang, H.Y.: Analysis of a rotating elastic beam with piezoelectric films as an angular rate sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 798–804 (2002)

    Article  Google Scholar 

  2. Yang, J.S., Fang, H.Y.: A piezoelectric gyroscope based on extensional vibrations of rods. Int. J. Appl. Electromagn. Mech. 17, 289–300 (2003)

    Article  Google Scholar 

  3. Bhadbhade, V., Jahli, N., Mahmoodi, S.N.: A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J. Sound Vib. 311, 1305–1324 (2008)

    Article  Google Scholar 

  4. Lajimi, S.A.M., Heppler, G.R., Abdel-Rahman, E.M.: A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech. Syst. Signal Process. 83, 163–175 (2017)

    Article  Google Scholar 

  5. Shahgholi, M., Khadem, S.E., Bab, S.: Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mech. Mach. Theory 82, 128–140 (2014)

    Article  Google Scholar 

  6. Nezhad, H.S.A., Hosseini, S.A.A., Zamanian, M.: Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn. 89, 651–690 (2017)

    Article  MATH  Google Scholar 

  7. Oskouie, M.F., Ansari, R., Sadeghi, F.: Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech. Solida Sin. 30, 416–424 (2017)

    Article  Google Scholar 

  8. Zhao, H.S., Zhang, Y., Lie, S.T.: Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects. Acta Mech. Sin. 34, 676–688 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, M.J., Liao, W.H.: Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 111, 239–244 (2016)

    Article  Google Scholar 

  10. Zou, H.X., Zhang, W.M., Li, W.B., et al.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 148, 1391–1398 (2017)

    Article  Google Scholar 

  11. Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Korayem, M.H., Homayooni, A.: The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory. Eur. J. Mech. A Solids 61, 59–72 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, J.R., Guo, Z.X., Zhang, Y., et al.: Inner structural vibration isolation method for a single control moment gyroscope. J. Sound Vib. 361, 78–98 (2016)

    Article  Google Scholar 

  14. Zhang, D.Y., Xia, Y., Scarpa, F., et al.: Interfacial contact stiffness of fractal rough surfaces. Sci. Rep. 7, 12874 (2017)

    Article  Google Scholar 

  15. He, T., Xie, Y., Shan, Y.C., et al.: Localizing two acoustic emission sources simultaneously using beamforming and singular value decomposition. Ultrasonics 85, 3–22 (2018)

    Article  Google Scholar 

  16. Ding, H., Zhu, M.H., Zhang, Z., et al.: Free vibration of a rotating ring on an elastic foundation. Int. J. Appl. Mech. 9, 1750051 (2017)

    Article  Google Scholar 

  17. Qin, Z., Chu, F., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  18. Lang, G.F.: Matrix madness and complex confusion. A review of complex modes from multiple viewpoints. Sound Vib. 46, 8–12 (2012)

    Article  Google Scholar 

  19. Yang, X.D., Yang, J.H., Qian, Y.J., et al.: Dynamics of a beam with both axial moving and spinning motion: an example of bi-gyroscopic continua. Eur. J. Mech. A Solids 69, 231–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. ASME J. Appl. Mech. 29, 7–14 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nayfeh, A.H., Nayfeh, S.A.: On nonlinear modes of continuous systems. J. Vib. Acoust. 116, 129–136 (1994)

    Article  Google Scholar 

  22. Nayfeh, A.H., Nayfeh, S.A.: Nonlinear normal-modes of a continuous system with quadratic nonlinearities. J. Vib. Acoust. 117, 199–205 (1995)

    Article  Google Scholar 

  23. Shaw, S.W., Pierre, C.: Nonlinear normal-modes and invariant-manifolds. J. Sound Vib. 150, 170–173 (1991)

    Article  MathSciNet  Google Scholar 

  24. Shaw, S.W., Pierre, C.: Normal-modes for nonlinear vibratory-systems. J. Sound Vib. 164, 85–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Carlos, E.N.M., César, T.S., Odulpho, G.P.B.N., et al.: Non-linear modal analysis for beams subjected to axial loads: analytical and finite-element solutions. Int. J. Non-Linear Mech. 43, 551–561 (2008)

    Article  MATH  Google Scholar 

  26. Uspensky, B., Avramov, K.: Nonlinear modes of piecewise linear systems under the action of periodic excitation. Nonlinear Dyn. 76, 1151–1156 (2013)

    Article  MathSciNet  Google Scholar 

  27. Arvin, H., Nejad, F.B.: Non-linear modal analysis of a rotating beam. Int. J. Non-Linear Mech. 46, 877–897 (2011)

    Article  Google Scholar 

  28. Qian, Y.J., Yang, X.D., Wu, H., et al.: Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta Mech. Sin. 34, 963–969 (2018)

    Article  MathSciNet  Google Scholar 

  29. Arquier, R., Bellizzi, S., Bouc, R., et al.: Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Comput. Struct. 84, 1565–1576 (2006)

    Article  MathSciNet  Google Scholar 

  30. Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322, 1009–1025 (2009)

    Article  Google Scholar 

  31. Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46, 1–15 (2014)

    Article  Google Scholar 

  32. Pesheck, E., Pierre, C., Shaw, S.W.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249, 971–993 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Renson, L., Deliege, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49, 1901–1916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pan, Y., Liu, X.D., Shan, Y.C., et al.: Complex modal analysis of serpentine belt drives based on beam coupling model. Mech. Mach. Theory 116, 162–177 (2017)

    Article  Google Scholar 

  35. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 646–663 (2014)

    Article  Google Scholar 

  36. Hong, J., Yu, P.C., Zhang, D.Y., et al.: Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact. Chin. J. Aeronaut. 31, 498–513 (2018)

    Article  Google Scholar 

  37. Sturla, F.A., Argento, A.: Free and forced vibrations of a spinning viscoelastic beam. J. Vib. Acoust. 118, 463–468 (1996)

    Article  Google Scholar 

  38. Ishida, Y., Inoue, T.: Nonstationary oscillations of a nonlinear rotor during acceleration through the major critical speed—influence of internal resonance. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 41, 599–607 (1998)

    Article  Google Scholar 

  39. Ma, Y., Liu, H.P., Zhu, Y.P., et al.: The NARX model-based system identification on nonlinear, rotor-bearing systems. Appl. Sci. 7, 911 (2017)

    Article  Google Scholar 

  40. Hosseini, S.A.A., Khadem, S.E.: Vibration and reliability of a rotating beam with random properties under random excitation. Int. J. Mech. Sci. 49, 1377–1388 (2007)

    Article  Google Scholar 

  41. Luo, Z., Zhu, Y.P., Zhao, X.Y., et al.: Determining dynamic scaling laws of geometrically distorted scaled models of a cantilever plate. J. Eng. Mech. 4, 04015108 (2016)

    Article  Google Scholar 

  42. Hosseini, S.A.A., Khadem, S.E.: Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech. Mach. Theory 44, 272–288 (2009)

    Article  MATH  Google Scholar 

  43. Ghafarian, M., Ariaei, A.: Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory. J. Appl. Phys. 120, 054301 (2016)

    Article  Google Scholar 

  44. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  45. Dadfarnia, M., Jalili, N., Xian, B., et al.: A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. J. Dyn. Syst. Trans. ASME 126, 347–358 (2004)

    Article  Google Scholar 

  46. Mahmoodi, S.N., Afshari, M., Jahli, N.: Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. Commun. Nonlinear Sci. 13, 1964–1977 (2008)

    Article  Google Scholar 

  47. Yang, J.S.: A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 698–706 (2005)

    Article  Google Scholar 

  48. Mojahedi, M., Ahmadian, M.T., Firoozbakhsh, K.: The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Compos. Part B 56, 336–343 (2014)

    Article  MATH  Google Scholar 

  49. Ma, H., Wang, D., Tai, X.Y., et al.: Vibration response analysis of blade-disk dovetail structure under blade tip rubbing condition. J. Vib. Control 23, 252–271 (2017)

    Article  Google Scholar 

  50. Sun, Q., Ma, H., Zhu, Y.P., et al.: Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models. Mech. Syst. Signal Process. 108, 1–20 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 11672007 and 11832002), Beijing Natural Science Foundation (Grant 3172003), and Graduate Student Science and Technology Foundation of Beijing University of Technology (Grant ykj-2017-00045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, XD., Zhang, W. et al. Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mech. Sin. 35, 879–893 (2019). https://doi.org/10.1007/s10409-019-00851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00851-4

Keywords

Navigation