Skip to main content
Log in

Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Elastic composites containing liquid inclusions exist widely in nature and in engineered systems. The volumetric response of liquid inclusions is important in many cases, such as an isolated cell embedded in an extracellular matrix or an oil pocket embedded within shale. In this study, we developed a model for describing the volumetric response of an ellipsoidal liquid inclusion. Specifically, we investigated the volumetric response of an ellipsoidal liquid inclusion embedded in a three-dimensional (3D) matrix through an analytical expression of the volumetric response. We performed parametric analysis and found that loading along the shortest axis can induce the most volume change, while loading along the longest axis can induce the least volume change. We also found that the volumetric response decreases with increasing Poisson ratio of the matrix. These results could be used to understand some cell behavior in a 3D matrix, for example, cell alignment under mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giordano, S., Colombo, L.: Effects of the orientational distribution of cracks in solids. Phys. Rev. Lett. 98(5), 055503 (2007)

    Article  Google Scholar 

  2. Bartlett, M.D., Fassler, A., Kazem, N., et al.: Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28(19), 3726–3731 (2016)

    Article  Google Scholar 

  3. Owuor, P.S., Hiremath, S., Chipara, A.C., et al.: Nature inspired strategy to enhance mechanical properties via liquid reinforcement. Adv. Mater. Interfaces 4(16), 1700240 (2017)

    Article  Google Scholar 

  4. Miriyev, A., Stack, K., Lipson, H.: Soft material for soft actuators. Nat. Commun. 8(1), 596 (2017)

    Article  Google Scholar 

  5. Cairns, D.R., Genin, G.M., Wagoner, A.J., et al.: Amplified stain-rate dependence of deformation in polymer-dispersed liquid-crystal materials. Appl. Phys. Lett. 75(13), 1872–1874 (1999)

    Article  Google Scholar 

  6. Elson, E.L., Genin, G.M.: The role of mechanics in actin stress fiber kinetics. Exp. Cell Res. 319(16), 2490–2500 (2013)

    Article  Google Scholar 

  7. Guo, M., Pegoraro, A.F., Mao, A., et al.: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. USA 114(41), 201705179 (2017)

    Google Scholar 

  8. Chen, C., Krishnan, R., Zhou, E.H., et al.: Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PLoS ONE 5(8), e12035 (2010)

    Article  Google Scholar 

  9. Krishnan, R., Park, C.Y., Lin, Y.C., et al.: Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4(5), e5486 (2009)

    Article  Google Scholar 

  10. Lee, S.L., Nekouzadeh, A., Butler, B., et al.: Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS ONE 7(12), e45512 (2012)

    Article  Google Scholar 

  11. De, R., Safran, S.A.: Dynamical theory of active cellular response to external stress. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78, 031923 (2008)

    Article  Google Scholar 

  12. De, R., Zemel, A., Safran, S.A.: Dynamics of cell orientation. Nat. Phys. 3(9), 655–659 (2007)

    Article  Google Scholar 

  13. Mcgarry, J.P., Fu, J., Yang, M.T., et al.: Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 2009(367), 3477–3497 (1902)

    MATH  Google Scholar 

  14. Hsu, H.J., Lee, C.F., Kaunas, R.: A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4(3), e4853 (2009)

    Article  Google Scholar 

  15. Kaunas, R., Hsu, H.J.: A kinematic model of stretch-induced stress fiber turnover and reorientation. J. Theor. Biol. 257(2), 320–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y., Huang, G.Y., Li, M.X., et al.: An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 6, 19550 (2016)

    Article  Google Scholar 

  17. Babaei, B., Davarian, A., Lee, S.L., et al.: Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomater. 37, 28–37 (2016)

    Article  Google Scholar 

  18. Marquez, J.P., Genin, G.M.: Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli. Philos. Trans. 2010(368), 635–654 (1912)

    Google Scholar 

  19. Marquez, J.P., Genin, G.M., Zahalak, G.I., et al.: The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88(2), 778–789 (2005)

    Article  Google Scholar 

  20. Ducloué, L., Pitois, O., Goyon, J., et al.: Coupling of elasticity to capillarity in soft aerated materials. Soft Matter 10(28), 5093–5098 (2014)

    Article  Google Scholar 

  21. Mora, S., Pomeau, Y.: Softening of edges of solids by surface tension. J. Phys. Condens. Matter Inst. Phys. J. 27(19), 194112 (2015)

    Article  Google Scholar 

  22. Wang, Y., Henann, D.L.: Finite-element modeling of soft solids with liquid inclusions. Extreme Mech. Lett. 9, 147–157 (2016)

    Article  Google Scholar 

  23. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  24. Shafiro, B., Kachanov, M.: Materials with fluid-filled pores of various shapes: effective elastic properties and fluid pressure polarization. Int. J. Solids Struct. 34(27), 3517–3540 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, X., Li, M.X., Yang, M., et al.: The elastic fields of a compressible liquid inclusion. Extreme Mech. Lett. 22, 122–130 (2018)

    Article  Google Scholar 

  26. Mancarella, F., Style, R.W., Wettlaufer, J.S.: Interfacial tension and a three-phase generalized self-consistent theory of non-dilute soft composite solids. Soft Matter 12(10), 2744–2750 (2016)

    Article  MATH  Google Scholar 

  27. Style, R.W., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11(4), 672–679 (2015)

    Article  Google Scholar 

  28. Eshelby, J.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 252(1271), 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  29. David, E.C., Zimmerman, R.W.: Compressibility and shear compliance of spheroidal pores: exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases. Int. J. Solids Struct. 48(5), 680–686 (2011)

    Article  MATH  Google Scholar 

  30. Gauvin, R., Parenteau-Bareil, R., Larouche, D., et al.: Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding. Acta Biomater. 7(9), 3294–3301 (2011)

    Article  Google Scholar 

  31. Grenier, G., Remy-Zolghadri, M., Larouche, D., et al.: Tissue reorganization in response to mechanical load increases functionality. Tissue Eng. 11(2), 90–100 (2005)

    Article  Google Scholar 

  32. Kanda, K., Matsuda, T.: Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transpl. 3(6), 481–492 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11522219 and 11532009), the National Institutes of Health (Grant U01EB016422), and the National Science Foundation through the Science and Technology Center for Engineering Mechanobiology (Grant CMMI 1548571).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xu or Tian Jian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., He, W., Liu, S. et al. Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mech. Sin. 35, 338–342 (2019). https://doi.org/10.1007/s10409-019-00850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00850-5

Keywords

Navigation