Skip to main content
Log in

Effects of marine sediment on the response of a submerged floating tunnel to P-wave incidence

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Submerged floating tunnels (SFTs) are a novel type of traffic structure for crossing long straits or deep lakes. To investigate the dynamic pressure acting on an SFT under compression (P) wave incidence, a theoretical analysis model considering the effect of marine sediment is proposed. Based on displacement potential functions, the reflection and refraction coefficients of P-waves in different media are derived. Numerical examples are employed to illustrate the effects of the thickness of the sediment layer, the incident P-wave angle, the tether stiffness and spacing, and the permeability of the sediment on the dynamic pressure loading on the SFT. The results show that the dynamic pressure is related to the saturation of the sediment and affected by its thickness. Partially saturated sediment will amplify the dynamic pressure loading on the SFT, and the resonance frequency increases slightly with fully saturated sediment. Besides, increasing the tether stiffness or decreasing the tether spacing will decrease the dynamic pressure. Locating the SFT at greater depth and reducing the permeability of the sediment are effective measures to reduce the dynamic pressure acting on the SFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Østlid, H.: When is SFT competitive? Procedia Eng. 4, 3–11 (2010). https://doi.org/10.1016/j.proeng.2010.08.003

    Article  Google Scholar 

  2. Xiang, Y., Yang, Y.: Challenge in design and construction of submerged floating tunnel and state-of-art. Procedia Eng. 166, 53–60 (2016). https://doi.org/10.1016/j.proeng.2016.11.562

    Article  Google Scholar 

  3. Fogazzi, P., Perotti, F.: The dynamic response of seabed anchored floating tunnels under seismic excitation. Earthq. Eng. Struct. D 29(3), 273–295 (2015). https://doi.org/10.1002/(sici)1096-9845(200003)29:3%3c273:aid-eqe899%3e3.0.co;2-z

    Article  Google Scholar 

  4. Di Pilato, M., Perotti, F., Fogazzi, P.: 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation. Eng. Struct. 30(1), 268–281 (2008). https://doi.org/10.1016/j.engstruct.2007.04.001

    Article  Google Scholar 

  5. Martire, G., Faggiano, B., Mazzolani, F.M., et al.: Seismic analysis of a SFT solution for the Messina Strait crossing. Procedia Eng. 4, 303–310 (2010). https://doi.org/10.1016/j.proeng.2010.08.034

    Article  Google Scholar 

  6. Martinelli, L., Barbella, G., Feriani, A.: A numerical procedure for simulating the multi-support seismic response of submerged floating tunnels anchored by cables. Eng. Struct. 33(10), 2850–2860 (2011). https://doi.org/10.1016/j.engstruct.2011.06.009

    Article  Google Scholar 

  7. Martinelli, L., Domaneschi, M., Shi, C.: Submerged floating tunnels under seismic motion: vibration mitigation and seaquake effects. Procedia Eng. 166, 229–246 (2016). https://doi.org/10.1016/j.proeng.2016.11.546

    Article  Google Scholar 

  8. Morita, S., Yamashita, T., Mizuno, Y., et al.: Earthquake response analysis of submerged floating tunnels considering water compressibility. In: the Fourth International Offshore and Polar Engineering Conference, 10–15 April, Osaka, Japan (1994)

  9. Mirzapour, J., Shahmardani, M., Tariverdilo, S.: Seismic response of submerged floating tunnel under support excitation. Ships Offshore Struct. 12(3), 1–8 (2016). https://doi.org/10.1080/17445302.2016.1171591

    Article  Google Scholar 

  10. Jin, H.L., Seo, S.I., Mun, H.S.: Seismic behaviors of a floating submerged tunnel with a rectangular cross-section. Ocean Eng. 127, 32–47 (2016). https://doi.org/10.1016/j.oceaneng.2016.09.033

    Article  Google Scholar 

  11. Takamura, H., Masuda, K., Maeda, H., et al.: A study on the estimation of the seaquake response of a floating structure considering the characteristics of seismic wave propagation in the ground and the water. J. Mar. Sci. Technol. 7(4), 164–174 (2003). https://doi.org/10.1007/s007730300007

    Article  Google Scholar 

  12. Fenves, G., Chopra, A.K.: Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequency response functions for concrete gravity dams. Earthq. Eng. Struct. D 13(1), 13–31 (1985). https://doi.org/10.1016/0148-9062(85)92284-3

    Article  Google Scholar 

  13. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956). https://doi.org/10.1121/1.1908239

    Article  MathSciNet  Google Scholar 

  14. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956). https://doi.org/10.1121/1.1908241

    Article  MathSciNet  Google Scholar 

  15. Madeo, A., Gavrilyuk, S.: Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A Solid 29(5), 897–910 (2010). https://doi.org/10.1016/j.euromechsom.2010.05.004

    Article  MathSciNet  Google Scholar 

  16. Dai, Z.J., Kuang, Z.B.: Reflection and transmission of elastic waves at the interface between water and a double porosity solid. Transp. Porous Media 72(3), 369–392 (2008). https://doi.org/10.1007/s11242-007-9155-y

    Article  MathSciNet  Google Scholar 

  17. Lu, W., Ge, F., Wu, X., et al.: Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Mar. Struct. 31, 63–81 (2013). https://doi.org/10.1016/j.marstruc.2013.01.002

    Article  Google Scholar 

  18. Stoll, R.D., Kan, T.K.: Reflection of acoustic waves at a water–sediment interface. J. Acoust. Soc. Am. 70(1), 149–156 (1981). https://doi.org/10.1121/1.385994

    Article  MATH  Google Scholar 

  19. Feng, S.J., Chen, Z.L., Chen, H.X.: Effects of multilayered porous sediment on earthquake-induced hydrodynamic response in reservoir. Soil Dyn. Earthq. Eng. 94, 47–59 (2017). https://doi.org/10.1016/j.soildyn.2017.01.001

    Article  Google Scholar 

  20. Bougacha, S., Tassoulas, J.L.: Effects of sedimentary material on the response of concrete gravity dams. Earthq. Eng. Struct. D 20(9), 849–858 (1991). https://doi.org/10.1002/eqe.4290200905

    Article  Google Scholar 

  21. Mei, C.C., Foda, M.A.: Wave-induced responses in a fluid-filled poro-elastic solid with a free surface—a boundary layer theory. Geophys. J. Int. 66(3), 597–631 (1981). https://doi.org/10.1111/j.1365-246X.1981.tb04892.x

    Article  MATH  Google Scholar 

  22. Verruijt, A.: Elastic storage of aquifers. In: DeWiest, R.J.M. (ed.) Flow through Porous Media. Academic Press, New York (1969)

    Google Scholar 

  23. Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am. 53(4), 783–788 (1963)

    Google Scholar 

  24. Xiang, Y., Yang, Y.: Spatial dynamic response of submerged floating tunnel under impact load. Mar. Struct. 53, 20–31 (2017). https://doi.org/10.1016/j.marstruc.2016.12.009

    Article  Google Scholar 

  25. Long, X., Ge, F., Wang, L., et al.: Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads. Acta Mech. Sin. 25(3), 335–344 (2009). https://doi.org/10.1007/s10409-009-0233-y

    Article  MATH  Google Scholar 

  26. Wang, J.T., Jin, F., Zhang, C.H.: Reflection and transmission of plane waves at an interface of water/porous sediment with underlying solid substrate. Ocean Eng. 63, 8–16 (2013). https://doi.org/10.1016/j.oceaneng.2013.01.028

    Article  Google Scholar 

  27. Domínguez, J., Gallego, R.: Effects of porous sediments on seismic response of concrete gravity dams. J. Eng. Mech-ASCE 123(4), 302–311 (1997). https://doi.org/10.1061/(ASCE)0733-9399(1997)123:4(302)

    Article  Google Scholar 

  28. Cheng, H.D.: Effect of sediment on earthquake-induced reservoir hydrodynamic response. J. Eng. Mech-ASCE 112(7), 654–665 (1986). https://doi.org/10.1061/(ASCE)0733-9399(1986)112:7(654)

    Article  Google Scholar 

  29. Lu, W., Ge, F., Wang, L., et al.: On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions. Mar. Struct. 24(4), 358–376 (2011). https://doi.org/10.1016/j.marstruc.2011.05.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51541810 and 51279178) and the Fundamental Research Funds for the Central Universities (Grant 2018QNA4032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Xiang.

Appendix A

Appendix A

The elements of the matrix a are listed below:


\( a_{0101} = k_{\mathrm{sP}z} \), \( a_{0102} = k_{x} \), \( a_{0103} = k_{{\mathrm{mP}_{1} z}} \), \( a_{0104} = - k_{{\mathrm{mP}_{1} z}} \), \( a_{0105} = - k_{x} \), \( a_{0106} = k_{{\mathrm{mP}_{2} z}} \), \( a_{0107} = - k_{{\mathrm{mP}_{2} z}} \), \( a_{0108} = - k_{x} \), \( a_{0109} = 0 \), \( a_{0110} = 0 \), \( a_{0111} = 0 \), \( a_{0112} = 0 \); \( a_{0201} = k_{\mathrm{sP}z} \), \( a_{0202} = k_{x} \), \( a_{0203} = \delta_{{\mathrm{P}_{1} }} k_{{\mathrm{mP}_{1} z}} \), \( a_{0204} = - \delta_{{\mathrm{P}_{1} }} k_{{\mathrm{mP}_{1} z}} \), \( a_{0205} = - \delta_{\rm S} k_{x} \), \( a_{0206} = \delta_{{\mathrm{P}_{2} }} k_{{\mathrm{mP}_{2} z}} \), \( a_{0207} = - \delta_{{\mathrm{P}_{2} }} k_{{\mathrm{mP}_{2} z}} \), \( a_{0208} = - \delta_{\rm S} k_{x} \), \( a_{0209} = 0 \), \( a_{0210} = 0 \), \( a_{0211} = 0 \), \( a_{0212} = 0 \); \( a_{0301} = - k_{x} \), \( a_{0302} = k_{\mathrm{sP}z} \), \( a_{0303} = k_{x} \), \( a_{0304} = k_{x} \), \( a_{0305} = k_{\mathrm{mS}z} \), \( a_{0306} = k_{x} \), \( a_{0307} = k_{x} \), \( a_{0308} = - k_{\mathrm{mS}z} \), \( a_{0309} = 0 \), \( a_{0310} = 0 \), \( a_{0311} = 0 \), \( a_{0312} = 0 \); \( a_{0401} = - (\lambda_{\text{s}} {k}_{\rm sp}^{2} { + 2}\mu_{\text{s}} {k}_{\mathrm{sP}z}^{2} ) \), \( a_{0402} = - 2\mu_{\text{s}} {k}_{\mathrm{sS}z} k_{x} \), \( a_{0403} = (A + Q)k_{{\mathrm{mP}_{1} }}^{2} + (Q + R)\delta_{{\mathrm{P}_{{_{1} }} }} k_{{\mathrm{mP}_{1} }}^{2} + 2Gk_{{\mathrm{mP}_{1} z}}^{2} \), \( a_{0404} = ({A} + {Q}){k}_{{\mathrm{mP}_{1} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{1} }} {k}_{{\mathrm{mP}_{1} }}^{2} + 2G{k}_{{\mathrm{mP}_{1} {z}}}^{2} \), \( a_{0405} = - 2Gk_{\mathrm{mS}z} k_{x} \), \( a_{0406} = ({A} + {Q}){k}_{{\mathrm{mP}_{2} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{2} }} {k}_{{\mathrm{mP}_{2} }}^{2} + 2G{k}_{{\mathrm{mP}_{2} {z}}}^{2} \), \( a_{0407} = ({A} + {Q}){k}_{{\mathrm{mP}_{2} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{2} }} {k}_{{\mathrm{mP}_{2} }}^{2} + 2G{k}_{{\mathrm{mP}_{2} {z}}}^{2} \), \( a_{0408} = 2Gk_{\mathrm{mS}z} k_{x} \), \( a_{0409} = 0 \), \( a_{0410} = 0 \), \( a_{0411} = 0 \), \( a_{0412} = 0 \); \( a_{0501} = 2\mu_{\text{s}} k_{\mathrm{sP}z} k_{x} \), \( a_{0502} = (k_{x}^{2} - {k}_{\mathrm{sS}z}^{2} )\mu_{\text{s}} \), \( a_{0503} = 2Gk_{{\mathrm{mP}_{1} z}} k_{x} \), \( a_{0504} = - 2Gk_{{\mathrm{mP}_{1} z}} k_{x} \), \( a_{0505} = - (k_{x}^{2} - {k}_{\mathrm{mS}z}^{2} ){G} \), \( a_{0506} = 2Gk_{{\mathrm{mP}_{2} z}} k_{x} \), \( a_{0507} = - 2Gk_{{\mathrm{mP}_{2} z}} k_{x} \), \( a_{0508} = - (k_{x}^{2} - {k}_{\mathrm{mS}z}^{2} ){G} \), \( a_{0509} = 0 \), \( a_{0510} = 0 \), \( a_{0511} = 0 \), \( a_{0512} = 0 \); \( a_{0601} = 0 \), \( a_{0602} = 0 \), \( a_{0603} = [(1 - {n}) + {n}\delta_{{\mathrm{P}_{1} }} ]{k}_{{\mathrm{mP}_{1} z}} \varphi_{1} ( - {h}_{1} ) \), \( a_{0604} = [(1 - {n}) + {n}\delta_{{\mathrm{P}_{1} }} ]{k}_{{\mathrm{mP}_{1} z}} \varphi_{1} ({h}_{1} ) \), \( a_{0605} = [(1 - {n}) + {n}\delta_{\rm S} ]{k}_{x} \varphi_{2} ( - {h}_{1} ) \), \( a_{0606} = [(1 - {n}) + {n}\delta_{{\mathrm{P}_{2} }} ]{k}_{{\mathrm{mP}_{2} z}} \varphi_{3} ( - {h}_{1} ) \), \( a_{0607} = [(1 - {n}) + {n}\delta_{{\mathrm{P}_{2} }} ]{k}_{{\mathrm{mP}_{2} z}} \varphi_{3} ({h}_{1} ) \), \( a_{0608} = [(1 - {n}) + {n}\delta_{\rm S} ]{k}_{x} \varphi_{2} ({h}_{1} ) \), \( a_{0609} = k_{\mathrm{w}z} \varphi_{4} ( - {h}_{1} ) \), \( a_{0610} = - k_{\mathrm{w}z} \varphi_{4} ({h}_{1} ) \), \( a_{0611} = 0 \), \( a_{0612} = 0 \); \( a_{0701} = 0 \), \( a_{0702} = 0 \), \( a_{0703} = - [({A} + {Q}){k}_{{\mathrm{mP}_{1} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{1} }} {k}_{{\mathrm{mP}_{1} }}^{2} + 2G{k}_{{\mathrm{mP}_{1} {z}}}^{2} ]\varphi_{1} ( - {h}_{1} ) \), \( a_{0704} = - [({A} + {Q}){k}_{{\mathrm{mP}_{1} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{1} }} {k}_{{\mathrm{mP}_{1} }}^{2} + 2G{k}_{{\mathrm{mP}_{1} {z}}}^{2} ]\varphi_{1} ({h}_{1} ) \), \( a_{0705} = 2Gk_{\mathrm{mS}z} k_{x} \varphi_{2} ( - {h}_{1} ) \), \( a_{0706} = - [({A} + {Q}){k}_{{\mathrm{mP}_{2} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{2} }} {k}_{{\mathrm{mP}_{2} }}^{2} + 2G{k}_{{\mathrm{mP}_{2} {z}}}^{2} ]\varphi_{3} ( - {h}_{1} ) \), \( a_{0707} = - [({A} + {Q}){k}_{{\mathrm{mP}_{2} }}^{2} + ({Q} + {R})\delta_{{\mathrm{P}_{2} }} {k}_{{\mathrm{mP}_{2} }}^{2} + 2G{k}_{{\mathrm{mP}_{2} {z}}}^{2} ]\varphi_{3} ({h}_{1} ) \), \( a_{0708} = - 2Gk_{\mathrm{mS}z} k_{x} \varphi_{2} ({h}_{1} ) \), \( a_{0709} = \omega^{2} \rho_{\rm w} \varphi_{4} ( - {h}_{1} ) \), \( a_{0710} = \omega^{2} \rho_{\rm w} \varphi_{4} ({h}_{1} ) \), \( a_{0711} = 0 \), \( a_{0712} = 0 \); \( a_{0801} = 0 \), \( a_{0802} = 0 \), \( a_{0803} = - [({Q} + {R}\delta_{{\mathrm{P}_{1} }} ){k}_{{\mathrm{mP}_{1} }}^{2} ]\varphi_{1} ( - {h}_{1} ) \), \( a_{0804} = - [({Q} + {R}\delta_{{\mathrm{P}_{1} }} ){k}_{{\mathrm{mP}_{1} }}^{2} ]\varphi_{1} ({h}_{1} ) \), \( a_{0805} = 0 \), \( a_{0806} = - [({Q} + {R}\delta_{{\mathrm{P}_{2} }} ){k}_{{\mathrm{mP}_{2} }}^{2} ]\varphi_{3} ( - {h}_{1} ) \), \( a_{0807} = - [({Q} + {R}\delta_{{\mathrm{P}_{2} }} ){k}_{{\mathrm{mP}_{2} }}^{2} ]\varphi_{3} ({h}_{1} ) \), \( a_{0808} = 0 \), \( a_{0809} = n\omega^{2} \rho_{\rm w} \varphi_{4} ( - {h}_{1} ) \), \( a_{0810} = n\omega^{2} \rho_{\rm w} \varphi_{4} ({h}_{1} ) \), \( a_{0811} = 0 \), \( a_{0812} = 0 \); \( a_{0901} = 0 \), \( a_{0902} = 0 \), \( a_{0903} = - 2Gk_{{\mathrm{mP}_{1} z}} k_{x} \varphi_{1} ( - {h}_{1} ) \), \( a_{0904} = 2Gk_{{\mathrm{mP}_{1} z}} k_{x} \varphi_{1} ({h}_{1} ) \), \( a_{0905} = (k_{x}^{2} - {k}_{\mathrm{mS}z}^{2} ){G}\varphi_{2} ( - {h}_{1} ) \), \( a_{0906} = - 2Gk_{{\mathrm{mP}_{2} z}} k_{x} \varphi_{3} ( - {h}_{1} ) \), \( a_{0907} = 2Gk_{{\mathrm{mP}_{2} z}} k_{x} \varphi_{3} ({h}_{1} ) \), \( a_{0908} = (k_{x}^{2} - {k}_{\mathrm{mS}z}^{2} ){G}\varphi_{2} ({h}_{1} ) \), \( a_{0909} = 0 \), \( a_{0910} = 0 \), \( a_{0911} = 0 \), \( a_{0912} = 0 \); \( a_{1001} = 0 \), \( a_{1002} = 0 \), \( a_{1003} = \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{{\mathrm{mP}_{1} z}} \), \( a_{1004} = - \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{{\mathrm{mP}_{1} z}} \), \( a_{1005} = \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{x} \), \( a_{1006} = \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{mP2z} \), \( a_{1007} = - \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{{\mathrm{mP}_{2} z}} \), \( a_{1008} = - \mathrm{i}\frac{K}{{\alpha_{\text{c}} L}}k_{x} \), \( a_{1009} = \omega^{2} \rho_{\rm w} \varphi_{4} ( - h_{1} - h_{2} ) - \mathrm{i}\frac{K}{L}k_{\mathrm{w}z} \varphi_{4} ( - h_{1} - h_{2} ) \), \( a_{1010} = \omega^{2} \rho_{\text{w}} \varphi_{4} (h_{1} + h_{2} ) + \mathrm{i}\frac{K}{L}k_{\mathrm{w}z} \varphi_{4} (h_{1} + h_{2} ) \), \( a_{1011} = - \omega^{2} \rho_{\text{w}} \varphi_{5} ( - h_{1} - h_{2} ) \), \( a_{1012} = - \omega^{2} \rho_{\text{w}} \varphi_{5} (h_{1} + h_{2} ) \); \( a_{1101} = 0 \), \( a_{1102} = 0 \), \( a_{1103} = 0 \), \( a_{1104} = 0 \), \( a_{1105} = 0 \), \( a_{1106} = 0 \), \( a_{1107} = 0 \), \( a_{1108} = 0 \), \( a_{1109} = - k_{\mathrm{w}z} \varphi_{4} ( - {h}_{1} - {h}_{2} ) \), \( a_{1110} = k_{\mathrm{w}z} \varphi_{4} ({h}_{1} { + h}_{2} ) \), \( a_{1111} = k_{\text{w}} \varphi_{5} ( - h_{1} - h_{2} ) \), \( a_{1112} = - k_{\text{w}} \varphi_{5} (h_{1} + h_{2} ) \); \( a_{1201} = 0 \), \( a_{1202} = 0 \), \( a_{1203} = 0 \), \( a_{1204} = 0 \), \( a_{1205} = 0 \), \( a_{1206} = 0 \), \( a_{1207} = 0 \), \( a_{1208} = 0 \), \( a_{1209} = 0 \), \( a_{1210} = 0 \), \( a_{1211} = \varphi_{5} ( - {H}) \), \( a_{1212} = \varphi_{5} ({H}) \); with \( \varphi_{1} (x) = \exp (\mathrm{i}k_{{\mathrm{mP}_{1} z}} x) \), \( \varphi_{2} (x) = \exp (\mathrm{i}k_{\mathrm{mS}z} x) \), \( \varphi_{3} (x) = \exp (\mathrm{i}k_{{\mathrm{mP}_{2} z}} x) \), \( \varphi_{4} (x) = \exp (\mathrm{i}k_{\mathrm{w}z} x) \), \( \varphi_{5} (x) = \exp (\mathrm{i}k_{\rm w} x) \).

The elements of the matrix f are listed below:

\( f_{01} = k_{\mathrm{sP}z} \), \( f_{02} = k_{\mathrm{sP}z} \), \( f_{03} = k_{x} \), \( f_{04} = \lambda_{\text{s}} k_{\rm sp}^{2} + 2\mu_{\text{s}} k_{\mathrm{sP}z}^{2} \), \( f_{05} = 2\mu_{\text{s}} k_{\mathrm{sP}z} k_{x} \), \( f_{06} = 0 \), \( f_{07} = 0 \), \( f_{08} = 0 \), \( f_{09} = 0 \), \( f_{10} = 0 \), \( f_{11} = 0 \), \( f_{12} = 0 \).

The elements of the matrix aʹ are listed below:

\( a^{{\prime }}_{0101} = k_{\mathrm{sP}z} \), \( a^{{\prime }}_{0102} = k_{x} \), \( a^{{\prime }}_{0103} = k_{\mathrm{w}z} \), \( a^{{\prime }}_{0104} = - k_{\mathrm{w}z} \), \( a^{{\prime }}_{0105} = 0 \), \( a^{{\prime }}_{0106} = 0 \); \( a^{\prime }_{0201} = - (\lambda_{\text{s}} k_{\rm sp}^{2} + 2\mu_{\text{s}} k_{\mathrm{sP}z}^{2} ) \), \( a^{{\prime }}_{0202} = - 2\mu_{\text{s}} k_{\mathrm{sP}z} k_{x} \), \( a^{\prime }_{0203} = \omega^{2} \rho_{\text{w}} \), \( a^{{\prime }}_{0204} = \omega^{2} \rho_{\text{w}} \), \( a^{{\prime }}_{0205} = 0 \), \( a^{{\prime }}_{0206} = 0 \); \( a^{{\prime }}_{0301} = 2k_{\mathrm{sP}z} k_{x} \mu_{\text{s}} \), \( a^{{\prime }}_{0302} = k_{x}^{2} - k_{{sS{\text{z}}}}^{2} \), \( a^{{\prime }}_{0303} = 0 \), \( a^{{\prime }}_{0304} = 0 \), \( a^{{\prime }}_{0305} = 0 \), \( a^{{\prime }}_{0306} = 0 \); \( a^{{\prime }}_{0401} = 0 \), \( a^{{\prime }}_{0402} = 0 \), \( a^{{\prime }}_{0403} = \omega^{2} \rho_{\text{w}} \varphi_{4} ( - h_{1} - h_{2} ) - \mathrm{i}\frac{K}{L}k_{\mathrm{w}z} [\varphi_{4} ( - h_{1} - h_{2} ) - 1] \), \( a^{\prime }_{0404} = \omega^{2} \rho_{\text{w}} \varphi_{4} (h_{1} + h_{2} ) + \mathrm{i}\frac{K}{L}k_{\mathrm{w}z} [\varphi_{4} (h_{1} + h_{2} ) - 1] \), \( a^{{\prime }}_{0405} = - \omega^{2} \rho_{\text{w}} \varphi_{5} ( - h_{1} - h_{2} ) \), \( a^{{\prime }}_{0406} = - \omega^{2} \rho_{\text{w}} \varphi_{5} (h_{1} + h_{2} ) \); \( a^{{\prime }}_{0501} = 0 \), \( a^{{\prime }}_{0502} = 0 \), \( a^{\prime }_{0503} = - k_{\mathrm{w}z} \varphi_{4} ( - h_{1} - h_{2} ) \), \( a^{\prime }_{0504} = k_{\mathrm{w}z} \varphi_{4} (h_{1} + h_{2} ) \), \( a^{{\prime }}_{0505} = k_{\text{w}} \varphi_{4} ( - h_{1} - h_{2} ) \), \( a^{{\prime }}_{0506} = - k_{\text{w}} \varphi_{4} ({h}_{1} { + h}_{2} ) \); \( a^{{\prime }}_{0601} = 0 \), \( a^{{\prime }}_{0602} = 0 \), \( a^{{\prime }}_{0603} = 0 \), \( a^{{\prime }}_{0604} = 0 \), \( a^{\prime }_{0605} = \varphi_{5} ( - H) \), \( a^{{\prime }}_{0606} = \varphi_{5} ({H}) \).

The elements of the matrix fʹ are listed below:

\( f^{{\prime }}_{01} = k_{\mathrm{sP}z} \), \( f^{{\prime }}_{02} = \lambda_{\text{s}} k_{\rm sp}^{2} + 2\mu_{\text{s}} k_{\mathrm{sP}z}^{2} \), \( f^{{\prime }}_{03} = 2\mu_{\text{s}} k_{\mathrm{sP}z} k_{x} \), \( f^{{\prime }}_{04} = 0 \), \( f^{{\prime }}_{05} = 0 \), \( f^{{\prime }}_{06} = 0 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Xiang, Y., Chen, Z. et al. Effects of marine sediment on the response of a submerged floating tunnel to P-wave incidence. Acta Mech. Sin. 35, 773–785 (2019). https://doi.org/10.1007/s10409-019-00847-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00847-0

Keywords

Navigation