Skip to main content
Log in

Surface evolution caused by curvature driven forces based on natural exponential pair potential

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Based on the natural exponential pair potential \( U\left( R \right) = C{\text{e}}^{{ - {R \mathord{\left/ {\vphantom {R {\lambda_{0} }}} \right. \kern-0pt} {\lambda_{0} }}}} \), the interaction potential between curved surface body and on surface particle is studied. Firstly, the interaction potential is written as a function of curvatures through the differential geometry. Secondly, idealized numerical experiments are designed to test the accuracy of curvature-based potential. Then, the driving forces induced by curvatures are analyzed, which confirms that micro/nano-curved surface bodies can induce driving forces; curvatures and the gradient of curvatures are the essential elements forming the driving forces. Finally, by combining with the curvature-based potential and driving forces, the movements on surface particles and the evolution of surface morphology of curved surface bodies are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhou, G., Luo, L., Li, L., et al.: Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 1–5 (2012)

    Google Scholar 

  2. Fang, X.F., Yan, L., Wang, D., et al.: Surface evolution at nanoscale during oxidation: a competing mechanism between local curvature effect and stress effect. J. Appl. Phys. 119, 1–8 (2016)

    Google Scholar 

  3. Veettil, S.K.T., Das, S.L., Balagopal, S.K.P.: Interplay of curvature sensing and generation mediated by peripheral membrane proteins. Biophys. J. 114, 614a (2018)

    Article  Google Scholar 

  4. Draper, W., Liphardt, J.: Origins of chemoreceptor curvature sorting in Escherichia coli. Nat. Commun. 8, 14838 (2017)

    Article  Google Scholar 

  5. Rosholm, K.R., Leijnse, N., Mantsiou, A., et al.: Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat. Chem. Boil. 13, 724–729 (2017)

    Article  Google Scholar 

  6. Wang, Y., Zhao, Y.P.: Eletrowetting on curved surfaces. Soft Matter 8, 2599–2606 (2012)

    Article  Google Scholar 

  7. Wang, Z., Zhao, Y.P.: Wetting and electrowetting on corrugated substrates. Phys. Fluids 29, 041607–041863 (2017)

    Google Scholar 

  8. Lázaro, G.R., Dragnea, B., Hagan, M.F.: Self-assembly of convex particles on spherocylindrical surfaces. Soft Matter 14, 5728–5740 (2018)

    Article  Google Scholar 

  9. Guan, Z., Wang, L., Zhu, X., et al.: Striped patterns self-assembled from rod–coil diblock copolymers on spherical substrates. Mater. Chem. Front. 1, 697–708 (2017)

    Article  Google Scholar 

  10. Ma, L., Xu, S., Wang, C., et al.: Electrically modulated localized surface plasmon around self-assembled-monolayer-covered nanoparticles. Langmuir 33, 1437–1441 (2017)

    Article  Google Scholar 

  11. Young, S.C., Gi, R.Y., Jong, M.L.: Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968–15975 (2005)

    Article  Google Scholar 

  12. Cavallaro, M., Botto, L., Lewandowski, E.P., et al.: Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl. Acad. Sci. USA 108, 20923–20928 (2011)

    Article  Google Scholar 

  13. De Boer, J.: Van der Waals in his time and the present revival opening address. Physica 73, 1–27 (1974)

    Article  Google Scholar 

  14. Casimir, H.B.G., Polder, D.: The influence of retardation on the London-van de Waals forces. Phys. Rev. 73, 360–372 (1948)

    Article  MATH  Google Scholar 

  15. Kralchevkky, P.A., Denkov, N.D.: Capillary forces and struvturing in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383–401 (2001)

    Article  Google Scholar 

  16. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier, New York (2011)

    Google Scholar 

  17. Irving, L.: The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868–934 (1919)

    Article  Google Scholar 

  18. Wang, D., Yin, Y.J., Wu, J.Y., et al.: Curvature-based interaction potential between micro/nano curved surface body and an outside particle. J. Comput. Theor. Nanosci. 12, 3206–3217 (2015)

    Article  Google Scholar 

  19. Wang, D., Yin, Y.J., Wu, J.Y., et al.: Curvature-based interaction potential between micro/nano curved surface body and a particle on the surface of the body. J. Biol. Phys. 42, 33–51 (2016)

    Article  Google Scholar 

  20. Chen, Y., Chen, S.: Potential functions of helium in molecular dynamics. J. Chem. Ind. Eng. 62, 1995–2000 (2012)

    Google Scholar 

  21. Freund, L.B.: Forced motion of an elastic filament through a narrow tube. Acta Mech. Sin. 31, 789–790 (2015)

    Article  Google Scholar 

  22. Liang, J., Guo, Z.S.: Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress. Acta Mech. Sin. 34, 187–198 (2018)

    Article  Google Scholar 

  23. Dong, Y., He, L.H.: Nonlinear analysis of photo-induced wrinkling of glassy twist nematic films on compliant substrates. Acta Mech. Sin. 31, 672–678 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Su, B.Q., Hu, H.S., Shen, C.L., et al.: Differential Geometry. People’s Education Press, Beijing (1979)

    Google Scholar 

  25. Wu, J.Y.: Biomembrane free energy and the driving forces induced by curvature gradients. [Ph.D. Thesis], Tsinghua University, Beijing (2012) (in Chinese)

  26. Gall, J.G., Callan, H.G.: The sphere organelle contains small nuclear ribonucleoproteins. Proc. Natl. Acad. Sci. USA 86, 6635–6639 (1989)

    Article  Google Scholar 

  27. Mycobacterium, S., Kuldeepkumar, R.G., Priyanka, B., et al.: Regulation of growth, cell shape, cell division, and gene expression by second messengers (p)ppGpp and cyclic Di-GMP in Mycobacterium smegmatis. J. Bacteriol. 198, 1414–1422 (2016)

    Article  Google Scholar 

  28. Taylor, J.E.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103, 489–539 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grants BK20180411 and BK20180429) and start-up funding awarded by the Nanjing University of Aeronautics and Astronautics (Grants 56SYAH17065 and 90YAH17065), the Fundamental Research Funds for the Central Universities (Grant NS2018004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yin, Y., Zhong, Z. et al. Surface evolution caused by curvature driven forces based on natural exponential pair potential. Acta Mech. Sin. 35, 445–456 (2019). https://doi.org/10.1007/s10409-018-0826-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0826-4

Keywords

Navigation