Skip to main content
Log in

Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 along the streamwise direction, based on the external flow velocity and the momentum thickness. Eight typical cases are selected for numerical investigation under the guidance of monoharmonic analysis. The instantaneous flow fields exhibit a traveling wavy motion of the compliant wall, and the frequency-wavenumber power spectrum of wall pressure fluctuation is computed to quantify the mutual influence of the wall compliance and the turbulent flow at different wave numbers. It is shown that the Reynolds shear stress and the pressure fluctuation are generally enhanced by the wall compliance with the parameters considered in the present study. A dynamical decomposition of the skin-friction coefficient is derived, and a new term (CW) appears due to the wall-induced Reynolds shear stress. The influence of the anisotropic compliant wall motion on the turbulent boundary layer through the wall-induced negative Reynolds shear stress is discussed. To elucidate the underlying mechanism, the budget analysis of the Reynolds stress transportation is further carried out. The impact of the wall compliance on the turbulent flow is disclosed by examining the variations of the diffusion and velocity–pressure correlation terms. It is shown that an increase of the Reynolds stress inside the flow domain is caused by enhancement of the velocity–pressure correlation term, possibly through the long-range influence of the wall compliance on the pressure field, rather than diffusion of the wall-induced Reynolds shear stress into the fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bushnell, D.M., Hefner, J.N., Ash, R.L.: Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids Part II 20, S31–S48 (1977)

    Article  Google Scholar 

  2. Riley, J.J., Gad-el-Hak, M., Metcalfe, R.W.: Compliant coatings. Annu. Rev. Fluid Mech. 20, 393–420 (1988)

    Article  Google Scholar 

  3. Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, S147–S157 (1996)

    Article  Google Scholar 

  4. Gad-el-Hak, M.: Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 77–99 (2002)

    Article  Google Scholar 

  5. Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)

    Article  MATH  Google Scholar 

  6. Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)

    Article  MATH  Google Scholar 

  7. Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)

    Article  MATH  Google Scholar 

  8. Yeo, K.S.: Hydrodynamic stability of boundary-layer flow over a class of anisotropic complaint walls. J. Fluid Mech. 220, 125–160 (1990)

    Article  MATH  Google Scholar 

  9. Yeo, K.S.: The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537–577 (1992)

    Article  MATH  Google Scholar 

  10. Lucey, A.D., Carpenter, P.W.: Boundary layer instability over compliant walls: comparison between theory and experiment. Phys. Fluids 7, 2355–2363 (1995)

    Article  MathSciNet  Google Scholar 

  11. Luhar, M., Sharma, A.S., McKeon, B.J.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kramer, M.O.: Boundary-layer stabilization by distributed damping. J. Aeronaut. Sci. 24, 459–460 (1957)

    Google Scholar 

  13. Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280 (1984)

    Article  Google Scholar 

  14. Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993)

    Article  Google Scholar 

  15. Choi, K.S., Yang, X., Clayton, B.R., et al.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997)

    Article  MATH  Google Scholar 

  16. Verma, M., Kumaran, V.: A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407–455 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Endo, T., Himeno, R.: Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 1–10 (2002)

    Article  Google Scholar 

  18. Xu, S., Rempfer, D., Lumley, J.: Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 11–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, H., Bewley, T.R.: Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin friction. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 460-470 (2003)

  20. Luo, H., Bewley, T.R.: Accurate simulation of near-wall turbulence over a compliant tensegrity fabric. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 184-197 (2005)

  21. Fukagata, K., Kern, S., Chatelain, P., et al.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, N35 (2008)

    Article  Google Scholar 

  22. Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)

    Article  MathSciNet  Google Scholar 

  23. Xia, Q.J., Huang, W.X., Xu, C.X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017)

    Article  Google Scholar 

  24. Rosti, M., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)

    Article  MathSciNet  Google Scholar 

  25. Kramer, M.O.: Hydrodynamics of the dolphin. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 2, pp. 111–130. Academic Press, New York (1965)

    Google Scholar 

  26. Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wänden. Selbstverlag Max-Planck-Institut für Strömungsforschung und der Aerodynamische Versuchsanstalt (1971) (in German)

  27. Grosskreutz, R.: An attempt to control boundary-layer turbulence with nonisotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 65–73 (1975)

    Google Scholar 

  28. Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, K., Baek, S.J., Sung, H.J.: An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)

    Article  MATH  Google Scholar 

  30. Huang, W.X., Sung, H.J.: Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)

    Article  MATH  Google Scholar 

  33. Xia, Q.J., Huang, W.X., Xu, C.X., et al.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47, 025503 (2015)

    Article  Google Scholar 

  34. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11772172 and 11490551). The authors would like to thank Tsinghua National Laboratory for Information Science and Technology for support in parallel computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, QJ., Huang, WX. & Xu, CX. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mech. Sin. 35, 384–400 (2019). https://doi.org/10.1007/s10409-018-0820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0820-x

Keywords

Navigation