Skip to main content
Log in

Instability inspection of parametric vibrating rectangular Mindlin plates lying on Winkler foundations under periodic loading of moving masses

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Parametric resonance is one of the most important issues in the study of dynamical behavior of structures. In this paper, dynamic instability of a moderately thick rectangular plate on an elastic foundation is investigated in the case of parametric and external resonances due to periodic passage of moving masses. The governing coupled partial differential equations (PDEs) of the system, with consideration of the first-order shear deformation theory (FSDT) or Mindlin plate theory, are presented and they are reduced to a set of ordinary differential equations (ODEs) with time-dependent coefficients using the Galerkin procedure. All inertial components of the moving masses are adopted in the dynamical formulation. Instability survey is carried out for three different loading trajectories considerably interested in many practical applications of the issue, i.e. rectilinear, diagonal and orbiting trajectories. In order to analyze the resonance conditions, the incremental harmonic balance (IHB) method is introduced to calculate instability boundaries, as well as external resonance curves in parameters plane. A comprehensive study is done to assess effects of thickness ratio and foundation stiffness on the resonance conditions. It is found that an increase in the plate’s thickness ratio leads to a reduction in values of critical parameters. Moreover, it is observed that increasing the foundation stiffness moves the instability regions and resonance curves to higher frequencies of the moving masses and also leads to further stability of the parametrically excited system at lower frequencies. Time response simulations done via Runge–Kutta method confirmed the results predicted by IHB method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Nikkhoo, A., Rofooei, F.R., Shadnam, M.R.: Dynamic behavior and modal control of beams under moving mass. J. Sound Vib. 306, 712–724 (2007)

    Article  MathSciNet  Google Scholar 

  2. Yang, Y., Ding, H., Chen, L.Q.: Dynamic response to a moving load of a Timoshenko beam resting on a nonlinear viscoelastic foundation. Acta Mech. Sin. 29, 718–727 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rao, G.V.: Linear dynamics of an elastic beam under moving loads. J. Vib. Acoust. 122, 281–289 (2000)

    Article  Google Scholar 

  4. Pirmoradian, M., Keshmiri, M., Karimpour, H.: Instability and resonance analysis of a beam subjected to moving mass loading via incremental harmonic balance method. J. Vibroengineering 16, 2779–2789 (2014)

    Google Scholar 

  5. Pirmoradian, M., Keshmiri, M., Karimpour, H.: On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis. Acta Mech. 226, 1241–1253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shadnam, M.R., Mofid, M., Akin, J.E.: On the dynamic response of rectangular plate, with moving mass. Thin-Walled Struct. 39, 797–806 (2001)

    Article  Google Scholar 

  7. Gbadeyan, J.A., Dada, M.S.: Dynamic response of a Mindlin elastic rectangular plate under a distributed moving mass. Int. J. Mech. Sci. 48, 323–340 (2006)

    Article  MATH  Google Scholar 

  8. Wu, J.J.: Vibration analyses of an inclined flat plate subjected to moving loads. J. Sound Vib. 299, 373–387 (2007)

    Article  Google Scholar 

  9. Kiani, K., Nikkhoo, A., Mehri, B.: Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method. Acta Mech. Sin. 26, 721–733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nikkhoo, A., Rofooei, F.R.: Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass. Acta Mech. 223, 15–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rofooei, F.R., Enshaeian, A., Nikkhoo, A.: Dynamic response of geometrically nonlinear, elastic rectangular plates under a moving mass loading by inclusion of all inertial components. J. Sound Vib. 394, 497–514 (2017)

    Article  Google Scholar 

  12. Amiri, J.V., Nikkhoo, A., Davoodi, M.R., et al.: Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method. Thin-Walled Struct. 62, 53–64 (2013)

    Article  Google Scholar 

  13. Nikkhoo, A., Hassanabadi, M.E., Azam, S.E., et al.: Vibration of a thin rectangular plate subjected to series of moving inertial loads. Mech. Res. Commun. 55, 105–113 (2014)

    Article  Google Scholar 

  14. Esen, I.: A new finite element for transverse vibration of rectangular thin plates under a moving mass. Finite Elem. Anal. Des. 66, 26–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esen, I.: A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory. Lat. Am. J. Solids Struct. 12, 808–830 (2015)

    Article  Google Scholar 

  16. Ghazvini, T., Nikkhoo, A., Allahyari, H., et al.: Dynamic response analysis of a thin rectangular plate of varying thickness to a traveling inertial load. J. Braz. Soc. Mech. Sci. Eng. 38, 403–411 (2016)

    Article  Google Scholar 

  17. Frýba, L.: Vibration of Solids and Structures Under Moving Loads. Thomas Telford House, London (1999)

    Book  MATH  Google Scholar 

  18. Ouyang, H.: Moving-load dynamic problems: a tutorial (with a brief overview). Mech. Syst. Signal Process. 25, 2039–2060 (2011)

    Article  Google Scholar 

  19. Fang, F., Xia, G., Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Y.Q., Zu, J.W.: Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp. Sci. Technol. 69, 550–562 (2017)

    Article  Google Scholar 

  21. Qian, Y.J., Yang, X.D., Wu, H., et al.: Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta Mech. Sin. (2018). https://doi.org/10.1007/s10409-018-0762-3

    MathSciNet  Google Scholar 

  22. Wang, Y.Q., Zu, J.W.: Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. Int. J. Appl. Mech. 9, 1750005 (2017)

    Article  Google Scholar 

  23. Jazar, G.N.: Stability chart of parametric vibrating systems using energy-rate method. Int. J. Non-Linear Mech. 39, 1319–1331 (2004)

    Article  MATH  Google Scholar 

  24. Karimpour, H., Pirmoradian, M., Keshmiri, M.: Instance of hidden instability traps in intermittent transition of moving masses along a flexible beam. Acta Mech. 227, 1213–1224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Torkan, E., Pirmoradian, M., Hashemian, M.: Occurrence of parametric resonance in vibrations of rectangular plates resting on elastic foundation under passage of continuous series of moving masses. Modares Mech. Eng. 17, 225–236 (2017)

    Google Scholar 

  26. Pirmoradian, M., Karimpour, H.: Parametric resonance and jump analysis of a beam subjected to periodic mass transition. Nonlinear Dyn. 89, 2141–2154 (2017)

    Article  Google Scholar 

  27. Pirmoradian, M., Torkan, E., Karimpour, H.: Parametric resonance analysis of rectangular plates subjected to moving inertial loads via IHB method. Int. J. Mech. Sci. 142, 191–215 (2018)

    Article  Google Scholar 

  28. Torkan, E., Pirmoradian, M., Hashemian, M.: On the parametric and external resonances of rectangular plates on an elastic foundation traversed by sequential masses. Arch. Appl. Mech. 88, 1411–1428 (2018)

    Article  Google Scholar 

  29. Leissa, A.W.: Vibration of Plates. US Government Printing Office, Washington (1969)

    Google Scholar 

  30. Wang, Y.Q., Zu, J.W.: Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity. Compos. Part B Eng. 117, 74–88 (2017)

    Article  Google Scholar 

  31. Wang, Y.Q., Zu, J.W.: Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Compos. Struct. 164, 130–144 (2017)

    Article  Google Scholar 

  32. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pirmoradian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkan, E., Pirmoradian, M. & Hashemian, M. Instability inspection of parametric vibrating rectangular Mindlin plates lying on Winkler foundations under periodic loading of moving masses. Acta Mech. Sin. 35, 242–263 (2019). https://doi.org/10.1007/s10409-018-0805-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0805-9

Keywords

Navigation