Skip to main content
Log in

A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The requirement of stress analysis and measurement is increasing with the great development of heterogeneous structures and strain engineering in the field of semiconductors. Micro-Raman spectroscopy is an effective method for the measurement of intrinsic stress in semiconductor structures. However, most existing applications of Raman-stress measurement use the classical model established on the (001) crystal plane. A non-negligible error may be introduced when the Raman data are detected on surfaces/cross-sections of different crystal planes. Owing to crystal symmetry, the mechanical, physical and optical parameters of different crystal planes show obvious anisotropy, leading to the Raman-mechanical relationship dissimilarity on the different crystal planes. In this work, a general model of stress measurement on crystalline silicon with an arbitrary crystal plane was presented based on the elastic mechanics, the lattice dynamics and the Raman selection rule. The wavenumber-stress factor that is determined by the proposed method is suitable for the measured crystal plane. Detailed examples for some specific crystal planes were provided and the theoretical results were verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiefer, W.: Recent advances in linear and nonlinear Raman spectroscopy I. J. Raman Spectrosc. 38, 1538–1553 (2007)

    Article  Google Scholar 

  2. Zhang, S.L.: Raman Spectroscopy and Its Application in Nanostructures. Wiley, New York (2012)

    Book  Google Scholar 

  3. Kraft, O., Hommel, M., Arzt, E.: X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng., A 288, 209–216 (2000)

    Article  Google Scholar 

  4. Qiu, W., Cheng, C.L., Liang, R.R., et al.: Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta. Mech. Sin. 32, 805–812 (2016)

    Article  Google Scholar 

  5. Sirleto, L., Vergara, A., Ferrara, M.A.: Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 9, 169–217 (2017)

    Article  Google Scholar 

  6. Hu, P.P., Liu, J., Zhang, S.X., et al.: Raman investigation of lattice defects and stress induced in InP and GaN films by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 372, 29–37 (2016)

    Article  Google Scholar 

  7. Qiu, W., Ma, L.L., Xing, H.D., et al.: Spectral characteristics of (111) silicon with Raman selections under different states of stress. AIP Adv. 7, 075002 (2017)

    Article  Google Scholar 

  8. Liu, W., Li, Q., Jin, G., et al.: Measurement of the Euler angles of wurtzitic ZnO by Raman spectroscopy. J. Spectrosc. 8, 1–9 (2017)

    Google Scholar 

  9. Zhang, Z., Sheng, S., Wang, R., et al.: Tip-enhanced raman spectroscopy. Anal. Chem. 88, 9328–9346 (2016)

    Article  Google Scholar 

  10. Srikar, V.T., Spearing, S.M.: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp. Mech. 43, 238–247 (2003)

    Article  Google Scholar 

  11. Webster, S., Smith, D., Batchelder, D.: Raman microscopy using a scanning near-field optical probe. Vib. Spectrosc. 18, 51–59 (1998)

    Article  Google Scholar 

  12. Loudon, R.: The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)

    Article  Google Scholar 

  13. Ganesan, S., Maradudin, A.A., Oitmaa, J.: A lattice theory of morphic effects in crystals of the diamond structure. Ann. Phys. 56, 556–594 (1970)

    Article  Google Scholar 

  14. Anastassakis, E., Pinczuk, A., Burstein, E., et al.: Effect of static uniaxal stress on the Raman spectrum of silicon. Solid State Commun. 88, 1053–1058 (1993)

    Article  Google Scholar 

  15. Anastassakis, E.: Strain characterization of polycrystalline diamond and silicon systems. J. Appl. Phys. 86, 249–258 (1999)

    Article  Google Scholar 

  16. Demangeot, F., Frandon, J., Renucci, M.A., et al.: Raman determination of phonon deformation potentials in α-GaN. Solid State Commun. 100, 207–210 (1996)

    Article  Google Scholar 

  17. Perova, T.S., Wasyluk, J., Lyutovich, K., et al.: Composition and strain in thin Si1−XGeX virtual substrates measured by micro-Raman spectroscopy and X-ray diffraction. J. Appl. Phys. 109, 33502 (2011)

    Article  Google Scholar 

  18. De Wolf, I., Jian, C., Van Spengen, W.M.: The investigation of microsystems using Raman spectroscopy. Opt. Lasers Eng. 36, 213–223 (2001)

    Article  Google Scholar 

  19. Qian, J., Yu, T.X., Zhao, Y.P.: Two-dimensional stress measurement of a micromachined piezoresistive structure with micro-Raman spectroscopy. Microsyst. Technol. 11, 97–103 (2005)

    Article  Google Scholar 

  20. De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1999)

    Article  Google Scholar 

  21. Chen, J., De Wolf, I.: Study of damage and stress induced by back grinding in Si wafers. Semicond. Sci. Technol. 18, 261–268 (2003)

    Article  Google Scholar 

  22. Chen, J., De Wolf, I.: Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging. IEEE Trans. Compon. Packag. Technol. 28, 484–492 (2005)

    Article  Google Scholar 

  23. Pezzotti, G.: Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005)

    Article  Google Scholar 

  24. Miyatake, T., Pezzotti, G.: Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: a comparison between ball-on-ring and micro-indentation methods. J. Appl. Phys. 110, 093511 (2011)

    Article  Google Scholar 

  25. Lei, Z.K., Kang, Y.L., Hu, M., et al.: An experimental analysis of residual stress measurements in porous silicon using micro-raman spectroscopy. Chin. Phys. Lett. 21, 403–405 (2004)

    Article  Google Scholar 

  26. Kang, Y.L., Qiu, Y., Lei, Z.K., et al.: An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng. 43, 847–855 (2005)

    Article  Google Scholar 

  27. Lei, Z.K., Kang, Y.L., Cen, H., et al.: Variability on Raman shift to stress coefficient of porous silicon. Chin. Phys. Lett. 23, 1623–1626 (2006)

    Article  Google Scholar 

  28. Li, Q., Qiu, W., Tan, H.Y., et al.: Micro-Raman spectroscopy stress measurement method for porous silicon film. Opt. Lasers Eng. 48, 1119–1125 (2010)

    Article  Google Scholar 

  29. Qiu, W., Kang, Y.L., Li, Q., et al.: Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon. Appl. Phys. Lett. 92, 041906 (2008)

    Article  Google Scholar 

  30. Xu, Z., Zheng, Q.: Micro- and nano-mechanics in China: a brief review of recent progress and perspectives. Sci. China Phys. Mech. Astron. 61, 74601 (2018)

    Article  Google Scholar 

  31. Liebold, C., Müller, W.H.: Strain maps on statically bend (001) silicon microbeams using AFM-integrated Raman spectroscopy. Arch. Appl. Mech. 85, 1353–1362 (2015)

    Article  Google Scholar 

  32. Wen, H., Borlaug, D., Wang, H., et al.: Engineering strain in silicon using SIMOX 3-D sculpting. IEEE Photon. J. 8, 1–9 (2016)

    Google Scholar 

  33. Naka, N., Kashiwagi, S., Nagai, Y., et al.: Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping. Jpn. J. Appl. Phys. 54, 106601 (2015)

    Article  Google Scholar 

  34. Anastassakis, E., Liarokapis, E.: Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J. Appl. Phys. 62, 3346–3352 (1987)

    Article  Google Scholar 

  35. Lughi, V., Clarke, D.R.: Defect and stress characterization of AlN films by Raman spectroscopy. Appl. Phys. Lett. 89, 241911 (2006)

    Article  Google Scholar 

  36. Wortman, J.J., Evans, R.A.: Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153–156 (1965)

    Article  Google Scholar 

  37. Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)

    Article  Google Scholar 

  38. Hall, J.J.: Electronic effects in the elastic constants of n-type silicon. Phys. Rev. 161, 756–761 (1967)

    Article  Google Scholar 

  39. Anastassakis, E.: Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997)

    Article  Google Scholar 

  40. Lei, Z.K., Wang, Q., Qiu, W.: Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy. Appl. Spectrosc. 67, 600–605 (2013)

    Article  Google Scholar 

  41. Lei, Z.K., Wang, Q.A., Kang, Y.L., et al.: Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber. Opt. Lasers Eng. 48, 1089–1095 (2010)

    Article  Google Scholar 

  42. Qiu, W., Kang, Y.L., Lei, Z.K., et al.: A new theoretical model of a carbon nanotube strain sensor. Chin. Phys. Lett. 26, 46–49 (2009)

    Google Scholar 

  43. De Wolf, I.: Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30, 877–883 (1999)

    Article  Google Scholar 

  44. De Wolf, I.: Relation between Raman frequency and triaxal stress in Si for surface and cross-sectional experiments in microelectronics components. J. Appl. Phys. 118, 53101 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grants 11772223, 11772227, and 61727810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qiu.

Appendix

Appendix

For the Raman measurement on the (001) crystal plane, its SCS can be chosen as \(\varvec {X}_{1}^{\prime}\) = [1 1 0] = [1 0 0]′, \(\varvec {X}_{2}^{\prime}\) = [− 1 1 0] = [0 1 0]′, \(\varvec {X}_{2}^{\prime}\) = [0 0 1] = [0 0 1]′. According to Eq. (1), the rotation matrix A is given by

$$ {\mathbf{A}} = \left( {\begin{array}{*{20}c} {\frac{1}{\sqrt 2 }} & {\frac{1}{\sqrt 2 }} & 0 \\ { - \frac{1}{\sqrt 2 }} & {\frac{1}{\sqrt 2 }} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right). $$

By substituting matrix A into Eq. (6), the matrix Hε and Hσ are achieved as follows,

$$ {\mathbf{H}}_{\varepsilon } = \left( {\begin{array}{*{20}c} {\frac{1}{2}} & {\frac{1}{2}} & 0 & {\frac{1}{2}} & 0 & 0 \\ {\frac{1}{2}} & {\frac{1}{2}} & 0 & { - \;\frac{1}{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ { - \;1} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{1}{\sqrt 2 }} & { - \frac{1}{\sqrt 2 }} \\ 0 & 0 & 0 & 0 & {\frac{1}{\sqrt 2 }} & {\frac{1}{\sqrt 2 }} \\ \end{array} } \right),\quad {\mathbf{H}}_{\sigma } = \left( {\begin{array}{*{20}c} {\frac{1}{2}} & {\frac{1}{2}} & 0 & 1 & 0 & 0 \\ {\frac{1}{2}} & {\frac{1}{2}} & 0 & { - \;1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ { - \;\frac{1}{2}} & {\frac{1}{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{1}{\sqrt 2 }} & { - \frac{1}{\sqrt 2 }} \\ 0 & 0 & 0 & 0 & {\frac{1}{\sqrt 2 }} & {\frac{1}{\sqrt 2 }} \\ \end{array} } \right) \, . $$

Using Eqs. (9) and (17), for the SCS of the C-Si, the compliance coefficient and the phonon deformation potential tensors can be written as

$$ {\mathbf{S}}^{\prime} = {\mathbf{H}}_{\varepsilon } {\mathbf{SH}}_{\varepsilon }^{\text{T}} = \left( {\begin{array}{*{20}c} \begin{aligned} \frac{1}{2}(s_{11} + s_{12} ) \hfill \\ + \;\frac{1}{4}s_{44} \hfill \\ \end{aligned} & \begin{aligned} \frac{1}{2}(s_{11} + s_{12} ) \hfill \\ - \frac{1}{4}s_{44} \hfill \\ \end{aligned} & {s_{12} } & 0 & 0 & 0 \\ \begin{aligned} \frac{1}{2}(s_{11} + s_{12} ) \hfill \\ - \;\frac{1}{4}s_{44} \hfill \\ \end{aligned} & \begin{aligned} \frac{1}{2}(s_{11} + s_{12} ) \hfill \\ + \;\frac{1}{4}s_{44} \hfill \\ \end{aligned} & {s_{12} } & 0 & 0 & 0 \\ {s_{12} } & {s_{12} } & {s_{11} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {2(s_{11} - s_{12} )} & 0 & 0 \\ 0 & 0 & 0 & 0 & {s_{44} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {s_{44} } \\ \end{array} } \right), $$
$$ {\mathbf{K}}^{\prime} = {\mathbf{H}}_{\sigma } {\mathbf{KH}}_{\sigma }^{\text{T}} = \left( {\begin{array}{*{20}c} \begin{aligned} \frac{1}{2}(k_{11} + k_{12} ) \hfill \\ + \;k_{44} \hfill \\ \end{aligned} & \begin{aligned} \frac{1}{2}(k_{11} + k_{12} ) \hfill \\ - \;k_{44} \hfill \\ \end{aligned} & {k_{12} } & 0 & 0 & 0 \\ \begin{aligned} \frac{1}{2}(k_{11} + k_{12} ) \hfill \\ - \;k_{44} \hfill \\ \end{aligned} & \begin{aligned} \frac{1}{2}(k_{11} + k_{12} ) \hfill \\ + \;k_{44} \hfill \\ \end{aligned} & {k_{12} } & 0 & 0 & 0 \\ {k_{12} } & {k_{12} } & {k_{11} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{1}{2}(k_{11} - k_{12} )} & 0 & 0 \\ 0 & 0 & 0 & 0 & {k_{44} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {k_{44} } \\ \end{array} } \right), $$

where k11 = p, k12 = q, k44 = r. Suppose that p′ = (p + q)/2+ r and q′ = (p + q)/2− r, then \({k}_{11}^{\prime}\) = \({k}_{22}^{\prime}\)  =  p′, \({k}_{33}^{\prime}\)  =  p, \({k}_{12}^{\prime}\) =  q′, \({k}_{13}^{\prime}\) = \({k}_{23}^{\prime}\) =  q, \({k}_{44}^{\prime}\) = (p  q)/2, and \({k}_{55}^{\prime}\) = \({k}_{66}^{\prime}\) =  r.

We assume that the material is subjected to uniaxial stress along \(\varvec {X}_{1}^{\prime}\), which is \(\sigma_{1}^{\prime}\)  =  σ′ ≠ 0. According to the generalized Hooke’s law, we obtain the strain in the SCS as follows,

$$ {{\mathbf{\varepsilon}}^{\prime}} = \left( {\begin{array}{*{20}c}{ {\varepsilon}^{\prime}_{1} } \\ {\varepsilon^{\prime}_{2} } \\ {\varepsilon^{\prime}_{3} } \\ {\varepsilon^{\prime}_{4} } \\ {\varepsilon^{\prime}_{5} } \\ {\varepsilon^{\prime}_{6} } \\ \end{array} } \right) = {\mathbf{S}}^{\prime}{\sigma}^{\prime} = \left( {\begin{array}{*{20}c} {\frac{1}{4}(2s_{11} + 2s_{12} + s_{44} )\sigma^{\prime}} \\ {\frac{1}{4}(2s_{11} + 2s_{12} - s_{44} )\sigma^{\prime}} \\ {s_{12} \sigma^{\prime}} \\ 0 \\ 0 \\ 0 \\ \end{array} } \right). $$

Substituting ε′ and K′ into Eq. (15), the secular matrix in the SCS then becomes

$$ \left| {\begin{array}{*{20}c} {p^{\prime}\varepsilon^{\prime}_{1} + q^{\prime}\varepsilon^{\prime}_{2} + q\varepsilon^{\prime}_{3} - \lambda^{\prime}} & 0 & 0 \\ 0 & {q^{\prime}\varepsilon^{\prime}_{1} + p^{\prime}\varepsilon^{\prime}_{2} + q\varepsilon^{\prime}_{3} - \lambda^{\prime}} & 0 \\ 0 & 0 & {q(\varepsilon^{\prime}_{1} + \varepsilon^{\prime}_{2} ) + p\varepsilon^{\prime}_{3} - \lambda^{\prime}} \\ \end{array} } \right| = 0, $$

and the eigenvalues and the corresponding eigenvectors can be easily obtained as follows

$$ \left\{ \begin{aligned} \lambda^{\prime}_{1} = p^{\prime}\varepsilon^{\prime}_{1} + q^{\prime}\varepsilon^{\prime}_{2} + q\varepsilon^{\prime}_{3} ,\quad {\mathbf{n}^{\prime}_{1}} = \left( {\begin{array}{*{20}c} 1 & 0 & 0 \\ \end{array} } \right)^{\prime } , \hfill \\ \lambda^{\prime}_{2} = q^{\prime}\varepsilon^{\prime}_{1} + p^{\prime}\varepsilon^{\prime}_{2} + q\varepsilon^{\prime}_{3} ,\quad {\mathbf{n}}^{\prime}_{2} = \left( {\begin{array}{*{20}c} 0 & 1 & 0 \\ \end{array} } \right)^{\prime } , \hfill \\ \lambda^{\prime}_{3} = q(\varepsilon^{\prime}_{1} + \varepsilon^{\prime}_{2} ) + p\varepsilon^{\prime}_{3} ,\quad\;\; {\mathbf{n}}^{\prime}_{3} = \left( {\begin{array}{*{20}c} 0 & 0 & 1 \\ \end{array} } \right)^{\prime } . \hfill \\ \end{aligned} \right. $$

By using Eq. (16),

$$ \left\{ \begin{aligned} & \Delta \omega_{1}^{\prime } = \frac{{\lambda_{1}^{\prime } }}{{2\omega_{0} }} = \frac{1}{2}\frac{{[(p + q)(s_{11} + s_{12} ) + rs_{44} ] + 2qs_{12} }}{{2\omega_{0} }}\sigma^{\prime}, \\ & \Delta \omega_{2}^{\prime } = \frac{{\lambda_{2}^{\prime } }}{{2\omega_{0} }} = \frac{1}{2}\frac{{[(p + q)(s_{11} + s_{12} ) - rs_{44} ] + 2qs_{12} }}{{2\omega_{0} }}\sigma^{\prime}, \\ & \Delta \omega_{3}^{\prime } = \frac{{\lambda_{3}^{\prime } }}{{2\omega_{0} }} = \frac{{q(s_{11} + s_{12} ) + ps_{12} }}{{2\omega_{0} }}\sigma^{\prime}, \\ \end{aligned} \right. $$

where ω0 = 520 cm−1, p = − 1.85ω 20 , q = − 2.31ω 20 , r = − 0.71ω 20 , s11 = 7.68 × 10−12 Pa−1, s12 = − 2.14 × 10−12 Pa−1, and s44 = 12.6 × 10−12 Pa−1. Thus, the wavenumber increments Δωj′ are given by

$$ \left\{ {\begin{array}{*{20}l} {\Delta \omega^{\prime}_{1} = \kappa_{1} \sigma^{\prime},\quad \kappa_{1} = - \;2.874, \, } \hfill \\ {\Delta \omega^{\prime}_{2} = \kappa_{2} \sigma^{\prime},\quad \kappa_{2} = - \;0.548, \, } \hfill \\ {\Delta \omega^{\prime}_{3} = \kappa_{3} \sigma^{\prime},\quad \kappa_{3} = - \;2.298. \, } \hfill \\ \end{array} } \right. $$

Hence, the Raman tensor Ri′ and its corresponding vector Vi′ in the SCS are given as follows

$$ \begin{array}{*{20}l} {{\mathbf{R}}^{\prime}_{1} = \frac{\sqrt 2 }{2}\left( {\begin{array}{*{20}c} 0 & 0 & d \\ 0 & 0 & { - \;d} \\ d & { - d} & 0 \\ \end{array} } \right),\quad {\mathbf{R}}^{\prime}_{2} = \frac{\sqrt 2 }{2}\left( {\begin{array}{*{20}c} 0 & 0 & d \\ 0 & 0 & d \\ d & d & 0 \\ \end{array} } \right),\quad {\mathbf{R}}^{\prime}_{3} = \left( {\begin{array}{*{20}c} d & 0 & 0 \\ 0 & { - \;d} & 0 \\ 0 & 0 & 0 \\ \end{array} } \right),} \\ {{\mathbf{V}}^{\prime}_{1} = \left( {\begin{array}{*{20}c} {\frac{1}{\sqrt 2 }} & { - \frac{1}{\sqrt 2 }} & 0 \\ \end{array} } \right)^{\prime } ,\quad {\mathbf{V}}^{\prime}_{2} = \left( {\begin{array}{*{20}c} {\frac{1}{\sqrt 2 }} & {\frac{1}{\sqrt 2 }} & 0 \\ \end{array} } \right)^{\prime } ,\quad {\mathbf{V}}^{\prime}_{3} = \left( {\begin{array}{*{20}c} 0 & 0 & 1 \\ \end{array} } \right)^{\prime } .} \\ \end{array} $$

Since Vi′ ≠ nk, the Raman tensor Rk corresponding vector nk is achieved by using Eq. (22) as follows

$$ {\mathbf{R}}^{\prime\prime}_{1} = \left( {\begin{array}{*{20}c} 0 & 0 & d \\ 0 & 0 & 0 \\ d & 0 & 0 \\ \end{array} } \right),\quad {\mathbf{R}}^{\prime\prime}_{2} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & d \\ 0 & d & 0 \\ \end{array} } \right),\quad {\mathbf{R}}^{\prime\prime}_{3} = \left( {\begin{array}{*{20}c} d & 0 & 0 \\ 0 & { - \;d} & 0 \\ 0 & 0 & 0 \\ \end{array} } \right). $$

Using Eq. (23), the Raman intensity of Δωk′ in the SCS are

$$ \left\{ {\begin{array}{*{20}l} {I^{\prime}_{1} = Q\left| {{{\mathbf{e}}^{\prime}}_{i}^{\text{T}} {\mathbf{R}}^{\prime\prime}_{1} {\kern 1pt} {\mathbf{e}}^{\prime}_{s} } \right|^{2} = Qd^{2} ({e}^{\prime}_{i1} {e}^{\prime}_{s3} + e^{\prime}_{i3} e^{\prime}_{s1} )^{2} ,} \hfill \\ {I^{\prime}_{2} = Q\left| {{{\mathbf{e}}^{\prime}}_{i}^{\text{T}} {\mathbf{R}}^{\prime\prime}_{2} {\kern 1pt} {\mathbf{e}}^{\prime}_{s} } \right|^{2} = Qd^{2} (e^{\prime}_{i2} e^{\prime}_{s3} + e^{\prime}_{i3} e^{\prime}_{s2} )^{2} ,} \hfill \\ {I^{\prime}_{3} = Q\left| {{{\mathbf{e}}^{\prime}}_{i}^{\text{T}} {\mathbf{R}}^{\prime\prime}_{3} {\kern 1pt} {\mathbf{e}^{\prime}}_{s} } \right|^{2} = Qd^{2} (e^{\prime}_{i1} e^{\prime}_{s1} - e^{\prime}_{i2} e^{\prime}_{s2} )^{2} .} \hfill \\ \end{array} } \right. $$

For the backscattering from the plane surface of (001) crystal plane, the incident light and scattering light are all along the \(\varvec {X}_{3}^{\prime}\) and all the polarization components in \(\varvec {X}_{3}^{\prime}\) are zero. This means that ei3′ = es3′ = 0. Hence, only I3′ is visible (viz. nonzero) no matter the polarization configures of the incident light and scattering light. The Raman-mechanical relationship becomes into Eq. (29).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Ma, L., Li, Q. et al. A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mech. Sin. 34, 1095–1107 (2018). https://doi.org/10.1007/s10409-018-0797-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0797-5

Keywords

Navigation