Skip to main content
Log in

Numerical and experimental analysis of the closed-cell aluminium foam under low velocity impact using computerized tomography technique

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In the present work, the response of closed-cell aluminum foams under low-velocity impact has been studied numerically and experimentally. Computerized tomography is employed to access three-dimensional (3D) microstructure of the closed-cell aluminum foam. Effective parameters including foam density and the velocity of impactor on foam dynamic behavior are investigated. In order to show the validity and accuracy of results, some static experiments and low-velocity impact tests have been conducted. Results indicate a remarkable agreement between the simulation and experimental data. Moreover, the results show that by increasing the density of foam samples, the highest difference between numerical and experimental results for peak stress and absorbed energy are 35.9% and 6.9%, respectively, which is related to the highest density. For impact velocities ranging from 3.1 to 4.2 m/s, the maximum discrepancy in peak stress and absorbed energy occur at an impact velocity of 3.1 m/s in which corresponding errors are 33.3% and 6.6%, respectively. For the impact velocity of 40 m/s, the highest increase in peak stress and absorbed energy are 667.9% and 370.3% associated with the density of 0.5 and 0.3 g/cm3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Peroni, M., Solomos, G., Pizzinato, V.: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74–83 (2013)

    Article  Google Scholar 

  2. Banhart, J.: Manufacture, characterisation, and application of cellular materials and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  Google Scholar 

  3. Ashby, F., Evans, A., Fleck, N.A., et al.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)

    Google Scholar 

  4. Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)

    Article  Google Scholar 

  5. Singh, R., Lee, P.D., Lindley, T.C., et al.: Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 6, 2342–2351 (2010)

    Article  Google Scholar 

  6. Dannemann, K.A., Lankford, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)

    Article  Google Scholar 

  7. Liu, Y., Gong, W., Zhang, X.: Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam. Comput. Mater. Sci. 91, 223–230 (2014)

    Article  Google Scholar 

  8. Montanini, R.: Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 47, 26–42 (2005)

    Article  Google Scholar 

  9. Fang, Q., Zhang, J., Zhang, Y., et al.: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 124, 409–420 (2015)

    Article  Google Scholar 

  10. Li, B., Zhao, G., Lu, T.: Low strain rate compressive behavior of high porosity closed-cell aluminum foams. Sci. China Technol. Sci. 55, 451–463 (2012)

    Article  Google Scholar 

  11. Yun, N., Shin, D., Ji, S., et al.: Experiments on blast protective systems using aluminum foam panels. KSCE J. Civ. Eng. 18, 2153–2161 (2014)

    Article  Google Scholar 

  12. Wang, P., Xu, S., Li, Z., et al.: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 620, 253–261 (2015)

    Article  Google Scholar 

  13. Toda, H., Ohgaki, T., Uesugi, K., et al.: In situ observation of fracture of aluminium foam using synchrotron X-ray microtomography. Key Eng. Mater. 297, 1189–1195 (2005)

    Article  Google Scholar 

  14. Toda, H., Takata, M., Ohgaki, T., et al.: 3-D image-based mechanical simulation of aluminium foams: effects of internal microstructure. Adv. Eng. Mater. 8, 459–467 (2006)

    Article  Google Scholar 

  15. Toda, H., Sinclair, I., Buffière, J., et al.: A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater. 52, 1305–1317 (2004)

    Article  Google Scholar 

  16. Sassov, A., Cornelis, E., Dyck, D.: Non-destructive 3D investigation of metal foam microstructure. Materialwissenschaft Werkst. 31, 571–573 (2000)

    Article  Google Scholar 

  17. Ohgaki, T., Toda, H., Kobayashi, M., et al.: In-situ high resolution x-ray CT observation of compressive and damage behavior of aluminum foams by local tomography technique. Adv. Eng. Mater. 8, 473–475 (2006)

    Article  Google Scholar 

  18. Elmoutaouakkil, A., Salvo, L., Maire, E., et al.: 2D and 3D characterization of metal foams using X-ray tomography. Adv. Eng. Mater. 4, 803–807 (2002)

    Article  Google Scholar 

  19. Veyhl, C., Belova, I.V., Murch, G.E., et al.: Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography. Mater. Sci. Eng. A 528, 4550–4555 (2011)

    Article  Google Scholar 

  20. Miedzinska, D., Niezgoda, T., Gieleta, R.: Numerical and experimental aluminum foam microstructure testing with the use of computed tomography. Comput. Mater. Sci. 64, 90–95 (2012)

    Article  Google Scholar 

  21. Ramirez, J.F., Cardona, M., Velez, J.A., et al.: Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images. Proc. Mater. Sci. 4, 227–231 (2014)

    Article  Google Scholar 

  22. Saadatfar, M., Mukherjee, M., Madadi, M., et al.: Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression. Acta Mater. 60, 3604–3615 (2012)

    Article  Google Scholar 

  23. Kader, M.A., Islam, M.A., Hazell, P.J., et al.: Modelling and characterization of cell collapse in aluminium foams during dynamic loading. Int. J. Impact Eng. 96, 78–88 (2016)

    Article  Google Scholar 

  24. Islam, M.A., Brown, A.D., Hazell, P.J., et al.: Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. Int. J. Impact Eng. 114, 111–122 (2018)

    Article  Google Scholar 

  25. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater. Sci. Eng. C 60, 163–183 (2016)

    Article  Google Scholar 

  26. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells. Int. J. Mech. Sci. 106, 19–38 (2016)

    Article  Google Scholar 

  27. Su, X.Y., Yu, T.X., Reid, S.R.: Inertia-sensitive impact energy absorbing structures, part II: effect of strain rate. Int. J. Impact Eng. 16, 673–689 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sadighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, S., Sadighi, M. & Aghdam, M.M. Numerical and experimental analysis of the closed-cell aluminium foam under low velocity impact using computerized tomography technique. Acta Mech. Sin. 35, 144–155 (2019). https://doi.org/10.1007/s10409-018-0795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0795-7

Keywords

Navigation