Skip to main content
Log in

A simulation-based study on longitudinal gust response of flexible flapping wings

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Watkins, S., Milbank, J., Loxton, B.J., et al.: Atmospheric winds and their implications for micro air vehicles. AIAA J. 44, 2591–2600 (2006)

    Article  Google Scholar 

  2. Combes, S.A., Dudley, R.: Turbulence-driven instabilities limit insect flight performance. Proc. Natl. Acad. Sci. USA 106, 9105–9108 (2009)

    Article  Google Scholar 

  3. Ravi, S., Crall, J.D., McNeilly, L., et al.: Hummingbird flight stability and control in freestream turbulent winds. J. Exp. Biol. 218, 1444–1452 (2015)

    Article  Google Scholar 

  4. Vance, J.T., Faruque, I., Humbert, J.S.: Kinematic strategies for mitigating gust perturbations in insects. Bioinspir. Biomim. 8, 016004 (2013)

    Article  Google Scholar 

  5. Fuller, S.B., Straw, A.D., Peek, M.Y., et al.: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Natl. Acad. Sci. USA 111, E1182–E1191 (2014)

    Article  Google Scholar 

  6. Ravi, S., Crall, J.D., Fisher, A., et al.: Rolling with the flow: bumblebees flying in unsteady wakes. J. Exp. Biol. 216, 4299–4309 (2013)

    Article  Google Scholar 

  7. Ortega-Jimenez, V.M., Greeter, J.S.M., Mittal, R., et al.: Hawkmoth flight stability in turbulent vortex streets. J. Exp. Biol. 216, 4567–4579 (2013)

    Article  Google Scholar 

  8. Ortega-Jimenez, V.M., Sapir, N., Wolf, M., et al.: Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics. Proc. R. Soc. B 281, 20140180 (2014)

    Article  Google Scholar 

  9. Ortega-Jimenez, V.M., Mittal, R., Hedrick, T.L.: Hawkmoth flight performance in tornado-like whirlwind vortices. Bioinspir. Biomim. 9, 025003 (2014)

    Article  Google Scholar 

  10. Ellington, C.P., van den Berg, C., Willmott, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  11. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  12. Srygley, R.B., Thomas, A.L.R.: Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660–664 (2002)

    Article  Google Scholar 

  13. Bomphrey, R.J., Nakata, T., Phillips, N., et al.: Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 92–95 (2017)

    Article  Google Scholar 

  14. Engels, T., Kolomenskiy, D., Schneider, K., et al.: Bumblebee in heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)

    Article  Google Scholar 

  15. Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014)

    Article  Google Scholar 

  16. Liu, H., Ravi, S., Kolomenskiy, D., et al.: Biomechanics and biomimetics in insect-inspired flight systems. Philos. Trans. R. Soc. B371, 20150390 (2016)

    Article  Google Scholar 

  17. Sane, S.P., Dickinson, M.H.: The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607–2626 (2001)

    Google Scholar 

  18. Elzinga, M.J., Dickson, W.B., Dickinson, M.H.: The influence of sensory delay on the yaw dynamics of a flapping insect. J. R. Soc. Interface 9, 1685–1696 (2012)

    Article  Google Scholar 

  19. Wootton, R.J.: Support and deformability in insect wings. J. Zool. 193, 447–468 (1981)

    Article  Google Scholar 

  20. Combes, S.A., Daniel, T.L.: Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)

    Article  Google Scholar 

  21. Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B279, 722–731 (2012)

    Article  Google Scholar 

  22. Young, J., Walker, S.M., Bomphrey, R.J., et al.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009)

    Article  Google Scholar 

  23. Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol. 213, 2273–2283 (2010)

    Article  Google Scholar 

  24. Zheng, L., Hedrick, T.L., Mittal, R.: Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8, e53060 (2012)

    Article  Google Scholar 

  25. Le, T.Q., Truong, T.V., Park, S.H., et al.: Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312 (2013)

    Article  Google Scholar 

  26. Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)

    Article  Google Scholar 

  27. Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. Lond. B354, 849–861 (1999)

    Article  Google Scholar 

  28. Carruthers, A.C., Thomas, A.L.R., Taylor, G.K.: Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. J. Exp. Biol. 210, 4136–4149 (2007)

    Article  Google Scholar 

  29. Ravi, S., Kolomenskiy, D., Engels, T., et al.: Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 6, 35043 (2016)

    Article  Google Scholar 

  30. Mistick, E.A., Mountcastle, A.M., Combes, S.A.: Wing flexibility improves bumblebee flight stability. J. Exp. Biol. 219, 3384–3390 (2016)

    Article  Google Scholar 

  31. Chen, J.S., Chen, J.Y., Chou, Y.F.: On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643–654 (2008)

    Article  Google Scholar 

  32. Ha, N.S., Truong, Q.T., Goo, N.S., et al.: Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir. Biomim. 8, 046008 (2013)

    Article  Google Scholar 

  33. Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)

    Article  MathSciNet  Google Scholar 

  34. Liu, H.: Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439–459 (2009)

    Article  MathSciNet  Google Scholar 

  35. Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. I. kinematics of hovering and forward flight. J. Exp. Biol. 200, 2705–2722 (1997)

    Google Scholar 

  36. Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)

    Article  MathSciNet  Google Scholar 

  37. Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208, 447–459 (2005)

    Article  Google Scholar 

  38. Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351–370 (2002)

    Article  Google Scholar 

  39. Viswanath, K., Tafti, D.K.: Effect of frontal gusts on forward flapping flight. AIAA J. 48, 2049–2062 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Grant-in-Aid for Scientific Research on Innovative Areas, the Japan Society for the Promotion of Science (Grant 24120007), and the Japan Society for the Promotion of Science KAKENHI (Grant JP17K17638).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiyuki Nakata or Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, T., Noda, R., Kumagai, S. et al. A simulation-based study on longitudinal gust response of flexible flapping wings. Acta Mech. Sin. 34, 1048–1060 (2018). https://doi.org/10.1007/s10409-018-0789-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0789-5

Keywords

Navigation