Skip to main content
Log in

Constitutive parameters identification of thermal barrier coatings using the virtual fields method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moiré interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point bending loading. As an application, the deformation fields of the TBC specimens were measured by moiré interferometry. Then, the mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young’s modulus of the TBC top coating is 89.91  GPa, and its Poisson’s ratio is 0.23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, X., Zhong, Y.L., Zhang, X.W.: Investigation of Nanomechanical and Aging Properties of Scratch-Resistant coatings on Polycarbonate through Nanoindentation. Adv. Mater. Res. 704220 (2013)

  2. Beghini, M., Bertini, L., Frendo, F.: Measurement of coatings’ elastic properties by mechanical methods: part 1. Consideration on experimental errors. Exp. Mech. 41(1), 293–304 (2001)

    Article  Google Scholar 

  3. Bao, Y.W., Zhou, Y.C., Bu, X.X.: Evaluating elastic modulus and strength of hard coatings by relative method. Mater. Sci. Eng. A Struct. Mater. 458(1), 268–274 (2007)

    Article  Google Scholar 

  4. Eberl, C., Gianola, D.S., Hemker, K.J.: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50(1), 85–97 (2010)

    Article  Google Scholar 

  5. Zhou, T., Nie, P.L., Lv, H.P.: Assessment of elastic properties of coatings by three-point bending and nanoindentation. J. Coat. Technol. Res. 8(3), 355–361 (2011)

    Article  Google Scholar 

  6. Avril, S., Bonnet, M., Bretelle, A.S.: Overview of identification methods of mechanical parameters based on Full-field measurements. Exp. Mech. 48, 381–402 (2008)

    Article  Google Scholar 

  7. Cottin, N., Felgenhauer, H.P., Natke, H.G.: On the parameter identification of elastomechanical systems using input and ouput residuals. Ingenieur-Archiv 54, 378–387 (1984)

    Article  MATH  Google Scholar 

  8. Lecompte, D., Smits, A., Sol, H., et al.: Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int. J. Solids Struct. 44, 1643–1656 (2007)

    Article  Google Scholar 

  9. Avril, S., Grédiac, M., Pierron, F.: Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34, 439–452 (2004)

    Article  MATH  Google Scholar 

  10. Pierron, F., Grédiac, M.: The virtual fields method. Springer, New York (2012)

    Book  MATH  Google Scholar 

  11. Grédiac, M., Toussaint, E., Pierron, F.: Special virtual fields for the direct determination of material parameters with the virtual fields method. 1—Principle and definition. Int. J. Solids Struct. 39, 2691–2705 (2002)

    Article  MATH  Google Scholar 

  12. Grediac, M.: Principe des travaux virtuels et identification/Principle of virtual works and identification. Comptes Rendus de l’Academie des Sciences 309–II, 1–5 (1989)

    MATH  Google Scholar 

  13. Jiang, L.B., Guo, B.Q., Xie, H.M.: Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation. Acta Mech. Sin. 31(2), 173–180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pierron, F.: Saint-Venant effects in the Iosipescu specimen. J. Compos Mater. 32(26), 1986–2015 (1998)

    Article  Google Scholar 

  15. Sutton, M.A., Yan, J.H., Avril, S., et al.: Identification of heterogeneous constitutive parameters in awelded specimen: uniform stressand virtual fields methods for material property estimation. Exp. Mech. 48(4), 451–64 (2008)

    Article  Google Scholar 

  16. Le Louëdec, G., Pierron, F., Sutton, M.A., et al.: Identification of the local elasto-plastic behavior of FSW welds using the Virtual Fields Method. Exp. Mech. 53, 849–859 (2013)

    Article  Google Scholar 

  17. Cao, Q.K., Xie, H.M.: Characterization for elastic constants of Fused Deposition Modelling-fabricated materials based on the Virtual Fields Method and Digital Image Correlation. Acta Mech. Sin. 33(6), 1075–1083 (2017)

    Article  Google Scholar 

  18. Bruno, L.: Mechanical characterization of composite materials by optical techniques: a review. Opt. Lasers Eng. 104, 192–203 (2018)

    Article  Google Scholar 

  19. Nguyen, T.T., Huntley, J.M., Ashcroft, I.A., et al.: A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials. Strain 53, e12229 (2017)

    Article  Google Scholar 

  20. Marek, A., Davis, F.M., Pierron, F.: Sensitivity-based virtual fields for the non-linear virtual fields method. Comput. Mech. (2017). https://doi.org/10.1007/s00466-017-1411-6

    MathSciNet  MATH  Google Scholar 

  21. Hao, W., Zhang, Y., Yuan, Y.: Eigenfunction virtual fields method for thermo-mechanical parameters identification of composite materials. Polym. Test. 50(2016), 224–234 (2016)

    Article  Google Scholar 

  22. Toussaint, E., Grédiac, M., Pierron, F.: The virtual fields method with piecewise virtual fields. Int. J. Mech. Sci. 48, 256–264 (2006)

    Article  MATH  Google Scholar 

  23. Grédiac, M., Pierron, F.: Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method: sensitivity study and experimental validation. Strain 43, 250–259 (2007)

    Article  Google Scholar 

  24. Grédiac, M., Pierron, F.: Numerical issues in the virtual fields method. Int. J. Numer. Methods Eng. 59, 1287–1312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Syed-Muhammad, K., Toussaint, E., Grédiac, M.: Optimization of a mechanical test on composite plates with the Virtual Fields Method. Struct. Multidiscip. Optim. 38, 71–82 (2009)

    Article  Google Scholar 

  26. Rossi, M., Pierron, F.: On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int. J. Solids Struct. 49, 420–435 (2012)

    Article  Google Scholar 

  27. Gu, X., Pierron, F.: Towards the design of a new standard for composite stiffness identification. Compos. Part A Appl. Sci. Manuf. 91, 448–460 (2016)

    Article  Google Scholar 

  28. Syed-Muhammad, K., Toussaint, E., Grédiac, M.: Characterization of composite plates using the virtual fields method with optimized loading conditions. Compos. Struct. 85, 70–82 (2008)

    Article  Google Scholar 

  29. Zhou, M.M., Xie, H.M., Wu, L.F.: Virtual fields method coupled with moiré interferometry: special considerations and application. Opt. Lasers Eng. 87, 214–222 (2016)

    Article  Google Scholar 

  30. Moiré Analysis Software. http://faculty.cua.edu/wangz/software_moire.htm

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Procedure of China (Grant 2017YFB1103900). Authors are also grateful to the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, 11227801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xie, H. & Li, L. Constitutive parameters identification of thermal barrier coatings using the virtual fields method. Acta Mech. Sin. 35, 78–87 (2019). https://doi.org/10.1007/s10409-018-0787-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0787-7

Keywords

Navigation