Skip to main content
Log in

Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace, satellite and wind turbine. Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency. Inspired by the concept of integrated design optimization of composite frame structures and materials, the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed. An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established. Two kinds of independent design variables are optimized, in which one is variables represented structural topology, the other is variables of continuous fiber winding angles. Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method. Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency. The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schütze, R.: Lightweight carbon fibre rods and truss structures. Mater. Des. 18, 231–238 (1997)

    Article  Google Scholar 

  2. Yang, C.Y., Yang, H.N.: Bending rigidity of a satellite antenna truss joint made of 3D woven composites. Mater. Sci. Technol. 16, 810–813 (2008)

    Google Scholar 

  3. Hu, B., Xue, J.X., Yan, D.Q.: Structural materials and design study for space station. Fiber Compos. 2, 60–64 (2004)

    Google Scholar 

  4. Michell, A.G.M.: The limits of economy of material in frame-structures. Philos. Mag. 8, 589–597 (1904)

    Article  Google Scholar 

  5. Takezawa, A., Nishiwaki, S., Izui, K., et al.: Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct. Multidiscip. Optim. 34, 41–60 (2007)

    Article  Google Scholar 

  6. Pedersen, N.L., Nielsen, A.K.: Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct. Multidiscip. Optim. 25, 436–445 (2003)

    Article  Google Scholar 

  7. Ni, C.H., Yan, J., Cheng, G.D., et al.: Integrated size and topology optimization of skeletal structures with exact frequency constraints. Struct. Multidiscip. Optim. 50, 113–128 (2014)

    Article  Google Scholar 

  8. Kanno, Y.: Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables. Struct. Multidiscip. Optim. 54, 301–316 (2016)

    Article  MathSciNet  Google Scholar 

  9. Pan, J., Wang, D.Y.: Topology optimization of truss structure under dynamic response constraints. Vib. Shock 25, 8–12 (2006)

    Google Scholar 

  10. Gholizadeh, S., Salajegheh, E., Torkzadeh, P.: Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. J. Sound Vib. 312, 316–331 (2008)

    Article  Google Scholar 

  11. An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)

    Article  Google Scholar 

  12. Bert, C.W.: Optimal design of a composite-material plate to maximize its fundamental frequency. J. Sound Vib. 50, 229–237 (1977)

    Article  Google Scholar 

  13. Fukunaga, H., Sekine, H., Sato, M.: Optimal design of symmetric laminated plates for fundamental frequency. J. Sound Vib. 171, 219–229 (1994)

    Article  Google Scholar 

  14. Sørensen, S.N., Lund, E.: Topology and thickness optimization of laminated composites including manufacturing constraints. Struct. Multidiscip. Optim. 48, 249–265 (2013)

    Article  MathSciNet  Google Scholar 

  15. Sørensen, S.N., Sørensen, R., Lund, E.: DMTO-a method for discrete material and thickness optimization of laminated composite structures. Struct. Multidiscip. Optim. 50, 25–47 (2014)

    Article  Google Scholar 

  16. Du, S.Y.: Advanced composite materials and aerospace engineering. Acta Mater. Compos. Sin. 24, 1–12 (2007)

    Google Scholar 

  17. Ashby, M.F.: Multi-objective optimization in material design and selection. Acta Mater. 48, 359–369 (2000)

    Article  Google Scholar 

  18. Ferreira, R.T.L., Rodrigues, H.C., Guedes, J.M., et al.: Hierarchical optimization of laminated fiber reinforced composites. Compos. Struct. 107, 246–259 (2014)

    Article  Google Scholar 

  19. Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)

    Article  Google Scholar 

  20. Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)

    Article  MathSciNet  Google Scholar 

  21. Gao, T., Zhang, W.H., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)

    Article  MathSciNet  Google Scholar 

  22. Gao, T., Zhang, W.H., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Methods Eng. 91, 98–114 (2012)

    Article  Google Scholar 

  23. Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)

    Article  Google Scholar 

  24. An, H.C., Chen, S.Y., Huang, H.: Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct. Multidiscip. Optim. 51, 903–918 (2015)

    Article  Google Scholar 

  25. Duan, Z.Y., Yan, J., Zhao, G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51, 721–732 (2015)

    Article  Google Scholar 

  26. Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model. Acta Mech. Sin. 32, 430–441 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct. Multidiscip. Optim. 56, 519–533 (2017)

    Article  Google Scholar 

  28. Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  29. Guo, X., Zhang, W.S., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)

    Article  MathSciNet  Google Scholar 

  30. Guo, X., Zhang, W.S., Zhong, W.L.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zuo, Z.H., Huang, X.D., Rong, J.H., et al.: Multi-scale design of composite materials and structures for maximum natural frequencies. Mater. Des. 51, 1023–1034 (2013)

    Article  Google Scholar 

  32. Du, J.B., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multidiscip. Optim. 34, 91–110 (2007)

    Article  MathSciNet  Google Scholar 

  33. Dorn, W.S.: Automatic design of optimal structures. J. Mec. 3, 25–52 (1964)

    Google Scholar 

  34. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  35. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  36. Blasques, J.P.: User’s Manuel for BECAS. Technical University of Denmark (2012)

  37. Lund, E.: Finite element based design sensitivity analysis and optimization. Ph.D. Thesis, Institute of Mechanical Engineering, Aalborg University, Denmark (1994)

  38. Cheng, G.D., Olhoff, N.: Rigid body motion test against error in semi-analytical sensitivity analysis. Comput. Struct. 46, 515–527 (1993)

    Article  Google Scholar 

  39. Blasques, J.P., Stolpe, M.: Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct. Multidiscip. Optim. 43, 573–588 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports for this research were provided by the National Natural Science Foundation of China (Grants 11372060, 11672057 and 11711530018), the 111 Project (Grant B14013), and the Program of BK21 Plus. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yan or Ikjin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Yan, J., Lee, I. et al. Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles. Acta Mech. Sin. 34, 1084–1094 (2018). https://doi.org/10.1007/s10409-018-0784-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0784-x

Keywords

Navigation