Skip to main content
Log in

Numerical study of three-dimensional developments of premixed flame induced by multiple shock waves

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The three-dimensional interactions of a perturbed premixed flame interface with a planar incident shock wave and its reflected shock waves are numerically simulated by solving the compressible, reactive Navier–Stokes equations with the high-resolution scheme and a single-step chemical reaction. The effects of the initial incident shock wave strength (Mach number) and the initial perturbation pattern of interface on the interactions are investigated. The distinct properties of perturbation growth on the flame interface during the interactions are presented. Our results show that perturbation growth is mainly attributed to the flame stretching and propagation. The flame stretching is associated with the larger-scale vortical flow due to Richtmyer–Meshkov instability while the flame propagation is due to the chemical reaction. The mixing properties of unburned/burned gases on both sides of the flame are quantitatively analyzed by using integral and statistical diagnostics. The results show that the large-scale flow due to the vortical motion always plays a dominating role during the reactive interaction process; however, the effect of chemistry becomes more important at the later stage of the interactions, especially for higher Mach number cases. The scalar dissipation due to the molecular diffusion is always small in the present study and can be negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Marble, F.E., Sonneborn, G., Pun, C.S.J., et al.: Physic conditions in circumstellar gas surrounding SN 1987A 12 years after outburst. Astrophys. J. 545, 390–398 (2000). https://doi.org/10.1086/317809

    Article  Google Scholar 

  2. Oran, E.S., Gamezo, V.N.: Origins of the deflagration-to-detonation transition in gas-phrase combustion. Combust. Flame 148, 4–47 (2007). https://doi.org/10.1016/j.combustflame.2006.07.010

    Article  Google Scholar 

  3. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993). https://doi.org/10.2514/3.11696

    Article  Google Scholar 

  4. Lindl, J.D., Mccrory, R.L., Campbell, E.M.: Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992). https://doi.org/10.1063/1.881318

    Article  Google Scholar 

  5. Ju, Y., Shimano, A., Inoue, O.: Vorticity generation and flame distortion induced by shock flame interaction. In: 27th Symposium (international) on combustion. The Combustion Institute, Pittsburgh, USA, pp 735–741 (1998). https://doi.org/10.1016/S0082-0784(98)80467-0

    Article  Google Scholar 

  6. Khokhlov, A.M., Oran, E.S.: Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame 119, 400–416 (1999). https://doi.org/10.1016/S0010-2180(99)00058-9

    Article  Google Scholar 

  7. Thomas, G.O., Bambrey, R., Brown, C.: Experimental observations of flame acceleration and transition to detonation following shock–flame interaction. Combust. Theory Model. 5, 573–594 (2001). https://doi.org/10.1088/1364-7830/5/4/304

    Article  Google Scholar 

  8. Gamezo, V.N., Oran, E.S., Khokhlov, A.M.: 3D reactive shock bifurcations. Proc. Combust. Inst. 30, 1841–1847 (2005). https://doi.org/10.1016/j.proci.2004.08.259

    Article  Google Scholar 

  9. Dong, G., Fan, B.C., Ye, J.F.: Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves 17, 409–419 (2008). https://doi.org/10.1007/s00193-008-0124-3

    Article  Google Scholar 

  10. Yuejin, Zhu, Gang, Dong, Yixin, Liu, et al.: 3D numerical simulations of spherical flame evolutions in reshock accelerated flows. Combust. Sci. Technol. 185, 415–1440 (2013). https://doi.org/10.1080/00102202.2013.798656

    Article  Google Scholar 

  11. Markstein, G.H.: A shock-tube study of flame front-pressure wave interaction. In: 6th Symposium (international) on combustion. The Combustion Institute, Pittsburgh, USA, pp 387–398 (1957). https://doi.org/10.1016/S0082-0784(57)80054-X

    Article  Google Scholar 

  12. Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y.: Interaction of a shock with a sinusoidally perturbed flame. Combust. Flame 117, 99–116 (1999). https://doi.org/10.1016/S0010-2180(98)00090-X

    Article  Google Scholar 

  13. Kilchyk, V., Nalim, R., Merkle, C.: Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves. Combust. Flame 158, 1140–1148 (2011). https://doi.org/10.1016/j.combustflame.2010.10.026

    Article  Google Scholar 

  14. Massa, L., Jha, P.: Linear analysis of the Richtmyer–Meshkov instability in shock-flame interactions. Phys. Fluids 24, 56–101 (2012). https://doi.org/10.1063/1.4719153

    Article  Google Scholar 

  15. Jiang, H., Dong, G., Chen, X., et al.: Numerical simulations of the process of multiple shock-flame interactions. Acta Mech. Sin. 32, 659–669 (2016). https://doi.org/10.1007/s10409-015-0552-0

    Article  MATH  Google Scholar 

  16. Jiang, H., Dong, G., Chen, X., et al.: A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves. Combust. Flame 169, 229–241 (2016). https://doi.org/10.1016/j.combustflame.2016.04.021

    Article  Google Scholar 

  17. Chen, X., Dong, G., Jiang, H.: A 3D numerical study on instability of sinusoidal flame induced by multiple shock waves. Acta Mech. Sin. 33, 316–326 (2017). https://doi.org/10.1007/s10409-017-0639-x

    Article  MATH  Google Scholar 

  18. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000). https://doi.org/10.1006/jcph.2000.6443

    Article  MathSciNet  MATH  Google Scholar 

  19. Ukai, S., Balakrishnan, K., Menon, S.: Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock. Shock Waves 21, 533–546 (2011). https://doi.org/10.1007/s00193-011-0332-0

    Article  Google Scholar 

  20. Nelson, N.J., Grinstein, F.F.: Effects of initial condition spectral content on shock-driven turbulent mixing. Phys. Rev. E 92, 013014 (2015). https://doi.org/10.1103/PhysRevE.92.013014

    Article  Google Scholar 

  21. Liu, C.Q., Wang, Y.Q., Yang, Y., et al.: New omega vortex identification method. Sci. China Phys. Mech. Astron. 59, 684–711 (2016). https://doi.org/10.1007/s11433-016-0022-6

    Article  Google Scholar 

  22. Latini, M., Schilling, O., Don, W.S.: Effects of WENO flux reconstruction order and spatial resolution on reshocked 2D Richtmyer–Meshkov instability. J. Comput. Phys. 221, 805–836 (2007). https://doi.org/10.1016/j.jcp.2006.06.051

    Article  MathSciNet  MATH  Google Scholar 

  23. Schilling, O., Latini, M.: High-order WENO simulations of 3D reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data. Acta Mathematica Scientia 30, 595–620 (2010). https://doi.org/10.1016/S0252-9602(10)60064-1

    Article  MATH  Google Scholar 

  24. Poludnenko, A.Y., Oran, E.S.: The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2011). https://doi.org/10.1016/j.combustflame.2010.09.002

    Article  Google Scholar 

  25. Thornber, B., Drikakis, D., Youngs, D.L., et al.: Growth of a Richtmyer-Meshkov turbulent layer after reshock. Phys. Fluids 23, 95–107 (2011). https://doi.org/10.1063/1.3638616

    Article  Google Scholar 

  26. Tritschler, V.K., Olson, B.J., Lele, S.K., et al.: On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429–462 (2014). https://doi.org/10.1017/jfm.2014.436

    Article  MathSciNet  Google Scholar 

  27. Lombardini, M., Pullin, D.I., Meiron, D.I.: Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. J. Fluid Mech. 748, 113–142 (2014). https://doi.org/10.1017/jfm.2014.163

    Article  Google Scholar 

  28. Oggian, T., Drikakis, D., Youngs, D.L., et al.: Computing multi-mode shock-induced compressible turbulent mixing at late time. J. Fluid Mech. 779, 411–431 (2015). https://doi.org/10.1017/jfm.2015.392

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, X., Dong, G., Jiang, H., et al.: Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves. Explos. Shock Waves 37, 229–236 (2017). https://doi.org/10.11883/1001-1455(2017)02-0229-08. (in Chinese)

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (11372140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Dong, G. & Li, B. Numerical study of three-dimensional developments of premixed flame induced by multiple shock waves. Acta Mech. Sin. 34, 1035–1047 (2018). https://doi.org/10.1007/s10409-018-0783-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0783-y

Keywords

Navigation