Skip to main content
Log in

Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The dynamic stall problem for blades is related to the general performance of wind turbines, where a varying flow field is introduced with a rapid change of the effective angle of attack (AOA). The objective of this work is to study the aerodynamic performance of a sinusoidally oscillating NACA0012 airfoil. The coupled \(k{-}\omega \) Menter’s shear stress transport (SST) turbulence model and \(\gamma {-}Re_{\uptheta }\) transition model were used for turbulence closure. Lagrangian coherent structures (LCS) were utilized to analyze the dynamic behavior of the flow structures. The computational results were supported by the experiments. The results indicated that this numerical method can well describe the dynamic stall process. For the case with reduced frequency \(K = 0.1\), the lift and drag coefficients increase constantly with increasing angle prior to dynamic stall. When the AOA reaches the stall angle, the lift and drag coefficients decline suddenly due to the interplay between the first leading- and trailing-edge vortex. With further increase of the AOA, both the lift and drag coefficients experience a secondary rise and fall process because of formation and shedding of the secondary vortex. The results also reveal that the dynamic behavior of the flow structures can be effectively identified using the finite-time Lyapunov exponent (FTLE) field. The influence of the reduced frequency on the flow structures and energy extraction efficiency in the dynamic stall process is further discussed. When the reduced frequency increases, the dynamic stall is delayed and the total energy extraction efficiency is enhanced. With \(K = 0.05\), the amplitude of the dynamic coefficients fluctuates more significantly in the poststall process than in the case of \(K = 0.1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\mu \) :

Dynamic viscosity \((\hbox {kg}/\hbox {m} {\cdot } \hbox {s})\)

\(u_{i}\) :

Velocity in the i-th direction (m/s)

x :

Position (m)

k :

Turbulent kinetic energy \((\hbox {m}^{2}/\hbox {s}^{2})\)

\(\omega \) :

Specific turbulent dissipation rate (1/s)

Re :

Reynolds number

w :

Angular velocity (1/s)

\(\delta \) :

Lyapunov exponent

\(\omega _{z}\) :

z-vorticity (1/s)

Q :

Second invariant of velocity gradient tensor (\(1/\hbox {s}^{2}\))

\(\Delta {t}\) :

Time step (s)

M(t):

Torque \((\hbox {N}{\cdot }\hbox {m})\)

T :

Time period of one cycle (s)

\(w_\mathrm{p}(t)\) :

Pitching angular velocity (1/s)

\(\rho \) :

Density (\(\hbox {kg/m}^{3}\))

References

  1. Melício, R., Mendes, V.M.F., Catalão, J.P.S.: Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction. Appl. Energy 88, 1322–1330 (2011)

    Article  Google Scholar 

  2. González, L.G., Figueres, E., Garcerá, G., et al.: Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Appl. Energy 87, 2304–2312 (2010)

    Article  Google Scholar 

  3. Karbasian, H.R., Esfahani, J.A., Barati, E.: The power extraction by flapping foil hydrokinetic turbine in swing arm mode. Renew. Energy 88, 130–142 (2016)

    Article  Google Scholar 

  4. Hang, L., Zhou, D., Lu, J., et al.: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine. Energy 119, 369–383 (2017)

    Article  Google Scholar 

  5. Mckenna, R., Leye, P.O.V.D., Fichtner, W.: Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 53, 1212–1221 (2016)

    Article  Google Scholar 

  6. Lu, K., Xie, Y., Zhang, D., et al.: Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator. Energy 89, 138–147 (2015)

    Article  Google Scholar 

  7. Huang, B., Wu, Q., Wang, G.Y.: Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil. Sci. China Technol. Sci. 57, 101–116 (2014)

    Article  Google Scholar 

  8. Lee, T.: Effect of flap motion on unsteady aerodynamic loads. J. Aircr. 44, 334–338 (2015)

    Google Scholar 

  9. Birch, D.M., Lee, T.: Tip vortex behind a wing undergoing deep-stall oscillation. AIAA J. 43, 2081–2092 (2015)

    Article  Google Scholar 

  10. Liu, T.T., Huang, B., Wang, G.Y., et al.: Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment. Ocean Eng. 129, 343–351 (2017)

    Article  Google Scholar 

  11. Wang, Y.W., Xu, C., Wu, X.C., et al.: Ventilated cloud cavitating flow around a blunt body close to the free surface. Phys. Rev. Fluids 2, 084303 (2017)

    Article  Google Scholar 

  12. Long, X.P., Cheng, H.Y., Ji, B., et al.: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiph. Flow 100, 41–56 (2018)

    Article  MathSciNet  Google Scholar 

  13. Wang, G.Y., Wu, Q., Huang, B.: Dynamics of cavitation–structure interaction. Acta Mech. Sin. 33, 685–708 (2017)

    Article  Google Scholar 

  14. Huang, B., Zhao, Y., Wang, G.Y.: Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)

    Article  Google Scholar 

  15. Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renew. Energy 86, 26–37 (2016)

    Article  Google Scholar 

  16. Hameed, M.S., Afaq, S.K.: Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques. Ocean Eng. 57, 248–255 (2013)

    Article  Google Scholar 

  17. Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. Trans. ASME 135, 071301 (2013)

    Article  Google Scholar 

  18. Ferreira, C.S., Bussel, G.V., Kuik, G.V.: 2D CFD simulation of dynamic stall on a vertical axis wind turbine: verification and validation with PIV measurements. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (2006)

  19. Wernert, P., Geissler, W., Raffel, M., et al.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)

    Article  Google Scholar 

  20. Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)

    Article  Google Scholar 

  21. Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25, 6–17 (1988)

    Article  Google Scholar 

  22. Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33, 759–846 (1997)

    Article  Google Scholar 

  23. Simpson, B.J., Hover, F.S., Triantafyllou, M.S.: Experiments in direct energy extraction through flapping foils. in: the Eighteenth International Offshore and Polar Engineering Conference, 2008

  24. Shehata, A.S., Xiao, Q., Saqr, K.M., et al.: Passive flow control for aerodynamic performance enhancement of airfoil with its application in wells turbine—under oscillating flow condition. Ocean Eng. 136, 31–53 (2017)

    Article  Google Scholar 

  25. Tseng, C.C., Hu, H.A.: Dynamic behaviors of the flow past a pitching foil based on Eulerian and Lagrangian viewpoints. AIAA J. 54, 712–727 (2016)

    Article  Google Scholar 

  26. Ducoin, A., Astolfi, J.A., Deniset, F., et al.: Computational and experimental investigation of flow over a transient pitching hydrofoil. Eur. J. Mech. B Fluids 28, 728–743 (2009)

    Article  MathSciNet  Google Scholar 

  27. Bhat, S.S., Govardhan, R.N.: Stall flutter of NACA 0012 airfoil at low Reynolds numbers. J. Fluids Struct. 41, 166–174 (2013)

    Article  Google Scholar 

  28. Wang, S., Ingham, D.B., Ma, L., et al.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)

    Article  Google Scholar 

  29. Huang, B., Ducoin, A., Young, L.Y.: Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys. Fluids 25, 102109 (2013)

    Article  Google Scholar 

  30. Chen, Y.L., Zhan, J.P., Wu, J., et al.: A fully-activated flapping foil in wind gust: energy harvesting performance investigation. Ocean Eng. 138, 112–122 (2017)

    Article  Google Scholar 

  31. Teng, L., Deng, J., Pan, D., et al.: Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil. Renew. Energy 85, 810–818 (2016)

    Article  Google Scholar 

  32. Lai, J.C.S., Platzer, M.F.: Jet characteristics of a plunging airfoil. AIAA J. 37, 1529–1537 (2015)

    Article  Google Scholar 

  33. Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)

    Article  Google Scholar 

  34. Guo, Q., Zhou, L., Wang, Z.: Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 75, 640–648 (2015)

    Article  Google Scholar 

  35. Wu, Q., Wang, Y.N., Wang, G.Y.: Experimental investigation of cavitating flow-induced vibration of hydrofoils. Ocean Eng. 144, 50–60 (2017)

    Article  Google Scholar 

  36. Wu, Q., Huang, B., Wang, G.Y., et al.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)

    Article  Google Scholar 

  37. Menter, F,R.: Improved two-equation \(k-\omega \) turbulence models for aerodynamic flows. NASA Tech. Memo. 34, 103975 (1992)

    Google Scholar 

  38. Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part I: model formulation. J. Turbomach. 128, 413–422 (2006)

    Article  Google Scholar 

  39. Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part II: test cases and industrial applications. J. Turbomach. 128, 423–434 (2006)

    Article  Google Scholar 

  40. Menter, F.R., Langtry, R.B., Völker, S.: Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)

    Article  Google Scholar 

  41. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)

    Article  MathSciNet  Google Scholar 

  42. Wu, Q., Huang, B., Wang, G.: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil. Acta Mech. Sin. 32, 64–74 (2016)

    Article  MathSciNet  Google Scholar 

  43. Tseng, C.C., Liu, P.B.: Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints. Int. J. Heat Mass Transf. 102, 479–500 (2016)

    Article  Google Scholar 

  44. Wang, Z.Y., Huang, B., Zhang, M.D., et al.: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics. Int. J. Multiph. Flow 98, 79–95 (2018)

    Article  Google Scholar 

  45. Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160 (2003)

    Article  MathSciNet  Google Scholar 

  46. Gohil, P.P., Saini, R.P.: Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant. Energy 93, 613–624 (2015)

    Article  Google Scholar 

  47. Roache, P.J.: Verification of codes and calculations. AIAA J. 36, 696–702 (2012)

    Article  Google Scholar 

  48. Kwasniewski, L.: Application of grid convergence index in FE computation. Bull. Pol. Acad. Sci. Tech. Sci. 61, 123–128 (2013)

    Google Scholar 

  49. Kleinhans, M.G., Jagers, H.R.A., Mosselman, E., et al.: Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130, 078001 (2008)

    Article  Google Scholar 

  50. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88. pp. 193–208 (1988)

  51. Choudhry, A., Leknys, R., Arjomandi, M., et al.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)

    Article  Google Scholar 

  52. Martinat, G., Braza, M., Hoarau, Y., et al.: Turbulence modeling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers. J. Fluids Struct. 24, 1294–1303 (2008)

    Article  Google Scholar 

  53. Velkova, C., Todorov, M., Dobrev, I., et al.: Approach for numerical modeling of airfoil dynamic stall. in: Proceedings of BulTrans-2012, 26–28 September, Sozopol, 1–6 (2012)

  54. Tseng, C.C., Cheng, Y.E.: Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages. J. Fluids Struct. 58, 291–318 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Postdoctoral Program for Innovative Talents (Grant BX201700126), the China Postdoctoral Science Foundation (Grant 2017M620043), the National Natural Science Foundation of China (Grants 51679005 and 91752105), and the National Natural Science Foundation of Beijing (Grant 3172029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wu, Q., Huang, B. et al. Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil. Acta Mech. Sin. 34, 839–854 (2018). https://doi.org/10.1007/s10409-018-0782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0782-z

Keywords

Navigation