Skip to main content
Log in

Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs)

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An approach is proposed to estimate the transfer function of the periodic structure, which is known as an absorber due to its repetitive cells leading to the band gap phenomenon. The band gap is a frequency range in which vibration will be inhibited. A transfer function is usually performed to gain band gap. Previous scholars regard estimation of the transfer function as a forward problem assuming known cell mass and stiffness matrices. However, the estimation of band gap for irregular or complicated cells is hardly accurate because it is difficult to model the cell exactly. Therefore, we treat the estimation as an inverse problem by employing modal identification and curve fitting. A transfer matrix is then established by parameters identified through modal analysis. Both simulations and experiments have been performed. Some interesting conclusions about the relationship between modal parameters and band gap have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photoniccrystals. Princeton University Press, Princeton (1995)

    Google Scholar 

  2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  3. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  4. Wang, Y.Z., Li, F.M., Kishimoto, K.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. 29, 182–189 (2010)

    Article  Google Scholar 

  5. Wang, Y.Z., Li, F.M., Kishimoto, K., et al.: Wave band gaps in three-dimensional periodic piezoelectric structures. Mech. Res. Commun. 36, 461–468 (2009)

    Article  MATH  Google Scholar 

  6. Yan, Z.Z., Wang, Y.S.: Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B 74, 224303 (2006)

    Article  Google Scholar 

  7. Yan, Z.Z., Wang, Y.S.: Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B 78, 094306 (2008)

    Article  Google Scholar 

  8. Casadei, F., Rimoli, J.J., Ruzzene, M.: Multiscale finite element analysis of wave propagation in periodic solids. Finite Elem. Anal. Des. 108, 81–95 (2016)

    Article  MATH  Google Scholar 

  9. Bardi, I., Peng, G., Petersson, L.E.R.: Modeling periodic layered structures by shell elements using the finite-element method. IEEE Trans. Magn. 52, 1–4 (2016)

    Article  Google Scholar 

  10. Ozaki, S., Hinata, K., Senatore, C., et al.: Finite element analysis of periodic ripple formation under rigid wheels. J. Terramech. 61, 11–22 (2015)

    Article  Google Scholar 

  11. Zhang, Y., Shang, S., Liu, S.: A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials. Acta. Mech. Sin. 33, 368–381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Article  Google Scholar 

  13. Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)

    Article  Google Scholar 

  14. Wen, S.R., Wu, Z.J., Lu, N.L.: High-precision solution to the moving load problem using an improved spectral element method. Acta Mech. Sin. 34, 68–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mead, D.J.: Wave propagation in continuous periodic structures: research contributions from southampton. J. Sound Vib. 190, 495–524 (1996)

    Article  Google Scholar 

  16. Gupta, G.S.: Natural frequencies of periodic skin-stringer structures using a wave approach. J. Sound Vib. 16, 567–580 (1971)

    Article  Google Scholar 

  17. Gupta, G.S.: Dynamics of Periodically Stiffened Structures Using a Wave Approach. University of Southampton, Southampton (1970)

    Google Scholar 

  18. Lin, Y.K., McDaniel, T.J.: Dynamics of beam-type periodic structures. J. Eng. Ind. 91, 1133 (1969)

    Article  Google Scholar 

  19. Ruzzene, M., Tsopelas, P.: Control of wave propagation in sandwich plate rows with periodic honeycomb core. J. Eng. Mech. 129, 975–986 (2003)

    Article  Google Scholar 

  20. Richards, D., Pines, D.J.: Passive reduction of gear mesh vibration using a periodic drive shaft. J. Sound Vib. 264, 317–342 (2003)

    Article  Google Scholar 

  21. Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  MATH  Google Scholar 

  22. Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016)

    Article  Google Scholar 

  23. Wang, Y.Z., Wang, Y.S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  24. Waki, Y.: On the Application of Finite Element Analysis to Wave Motion in One-Dimensional Waveguides. University of Southampton, Southampton (2007)

    Google Scholar 

  25. Mace, B.R., Duhamel, D., Brennan, M.J., et al.: Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117, 2835–2843 (2005)

    Article  Google Scholar 

  26. Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294, 205–220 (2006)

    Article  Google Scholar 

  27. Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181, 485–501 (1995)

    Article  Google Scholar 

  28. Zhong, W.X., Williams, F.W., Leung, A.Y.T.: Symplectic analysis for periodical electro-magnetic waveguides. J. Sound Vib. 267, 227–244 (2003)

    Article  Google Scholar 

  29. Hendrickx, W., Dhaene, T.: A discussion of “Rational approximation of frequency domain responses by vector fitting”. IEEE Trans. Power Syst. 21, 441–443 (2006)

    Article  Google Scholar 

  30. Gustavsen, B.: Relaxed vector fitting algorithm for rational approximation of frequency domain responses. In: IEEE Workshop on Signal Propagation on Interconnects, Berlin, Germany (2006)

  31. Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14, 1052–1061 (1999)

    Article  Google Scholar 

  32. Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003)

    Article  Google Scholar 

  33. Cremer, L., Heckl, M., Petersson, B.A.T.: Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 3rd edn. Springer, Berlin (2005)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11272235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Wen Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LJ., Song, HW. Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs). Acta Mech. Sin. 35, 156–173 (2019). https://doi.org/10.1007/s10409-018-0781-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0781-0

Keywords

Navigation