Skip to main content
Log in

A three-parameter single-step time integration method for structural dynamic analysis

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The existing three-parameter single-step time integration methods, such as the Generalized-\(\alpha \) method, improve numerical dissipation by modifying equilibrium equation at time points, which cause them to lose accuracy due to the interpolation of load vectors. Moreover, these three-parameter methods do not present an available formulation applied to a general second-order nonlinear differential equation. To solve these problems, this paper proposes an innovative three-parameter single-step method by introducing an additional variable into update equations. Although the present method is spectrally identical to the Generalized-\(\alpha \) method for undamped systems, it possesses higher accuracy since it strictly satisfies the equilibrium equation at time points, and can be readily used to solve nonlinear equations. By the analysis of accuracy, stability, numerical dissipation and dispersion, the optimal second-order implicit and explicit schemes are generated, which can maximize low-frequency accuracy when high-frequency dissipation is specified. To check the performance of the proposed method, several numerical experiments are conducted and the proposed method is compared with a few up-to-date methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Newmark, N.M.: A method of computation for structural dynamics. Proc. ASCE 85, 67–94 (1959)

    Google Scholar 

  2. Wilson E.L.: A computer program for the dynamic stress analysis of underground structures. California Univ. Berkeley Structural Engineering Lab, No. SEL-68-1, 1968

  3. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. D 5, 283–292 (1977)

    Article  Google Scholar 

  4. Wood, W.L., Bossak, M., Zienkiewicz, O.C.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15, 1562–1566 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized \(\alpha \)-method. J. Appl. Mech. 32, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Houbolt, J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17, 540–550 (1950)

    Article  MathSciNet  Google Scholar 

  7. Park, K.C.: An improved stiffly stable method for direct integration of nonlinear structural dynamic equation. J. Appl. Mech. 42, 464–470 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhai, W.M.: Two simple fast integration methods for large-scale dynamic problems in engineering. Int. J. Numer. Methods Eng. 39, 4199–4214 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rezaiee-Pajand, M., Alamatian, J.: Implicit higher order accuracy method for numerical integration in dynamic analysis. J. Struct. Eng. ASCE 134, 973–985 (2008)

    Article  MATH  Google Scholar 

  10. Alamatian, J., Rezaiee-Pajand, M.: Numerical time integration for dynamic analysis using a new higher order predictor-corrector method. Eng. Comput. 25, 541–568 (2008)

    Article  MATH  Google Scholar 

  11. Zienkiewicz, O.C., Wood, W.L., Hine, N.M., et al.: A unified set of single step algorithms. Part 1: general formulation and application. Int. J. Numer. Methods Eng. 20, 1529–1552 (1984)

    Article  MATH  Google Scholar 

  12. Tamma, K.K., Sha, D., Zhou, X.: Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 257–290 (2003)

    Article  MATH  Google Scholar 

  13. Sha, D., Zhou, X., Tamma, K.K.: Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 291–329 (2003)

    Article  MATH  Google Scholar 

  14. Zhou, X., Tamma, K.K.: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Int. J. Numer. Methods Eng. 59, 597–668 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83, 2513–2524 (2005)

    Article  MathSciNet  Google Scholar 

  16. Noh, G., Bathe, K.J.: An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 129, 178–193 (2013)

    Article  Google Scholar 

  17. Zhang, J., Liu, Y., Liu, D.: Accuracy of a composite implicit time integration scheme for structural dynamics. Int. J. Numer. Methods Eng. 109, 368–406 (2017)

    Article  MathSciNet  Google Scholar 

  18. Noh, G., Ham, S., Bathe, K.J.: Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct. 123, 93–105 (2013)

    Article  Google Scholar 

  19. Klarmann, S., Wagner, W.: Enhanced studies on a composite time integration scheme in linear and non-linear dynamics. Comput. Mech. 2015, 455–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chandra, Y., Zhou, Y., Stanciulescu, I., et al.: A robust composite time integration scheme for snap-through problems. Comput. Mech. 55, 1041–1056 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wen, W.B., Wei, K., Lei, H.S., et al.: A novel sub-step composite implicit time integration scheme for structural dynamics. Comput. Struct. 182, 176–186 (2017)

    Article  Google Scholar 

  22. Rezaiee-Pajand, M., Sarafrazi, S.R.: A mixed and multi-step higher-order implicit time integration family. J. Mech. Eng. Sci. 224, 2097–2108 (2010)

    Article  Google Scholar 

  23. Xing, Y., Guo, J.: Differential quadrature time element method for structural dynamics. Acta Mech. Sin. 28, 782–792 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xing, Y., Qin, M., Guo, J.: A time finite element method based on the differential quadrature rule and Hamilton’s variational principle. Appl. Sci. 7, 138 (2017)

    Article  Google Scholar 

  25. Qin, M., Xing, Y., Guo, J.: An improved differential quadrature time element method. Appl. Sci. 7, 471 (2017)

    Article  Google Scholar 

  26. Wen, W.B., Luo, S.M., Jian, K.L.: A novel time integration method for structural dynamics utilizing uniform quintic B-spline functions. Arch. Appl. Mech. 85, 1743–1759 (2015)

    Article  Google Scholar 

  27. Shojaee, S., Rostami, S., Abbasi, A.: An unconditionally stable implicit time integration algorithm: modified quartic B-spline method. Comput. Struct. 153, 98–111 (2015)

    Article  Google Scholar 

  28. Tamma, K.K., Har, J., Zhou, X.M., et al.: An overview and recent advances in vector and scalar formalisms: space/Time discretization in computational dynamics-A unified approach. Arch. Comput. Methods E. 18, 119–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shao, H.P., Cai, C.W.: The direct integration three-parameter optimal schemes for structural dynamics. In: Proceeding of the International Conference: Machine Dynamics and Engineering Applications, Xi’an, 1988, pp. 16–20

  30. Lax, P.D., Richmyer, R.D.: Survey of the stability of linear limit difference equations. Commun. Pure Appl. Math. 9, 267–293 (1956)

    Article  Google Scholar 

  31. Bathe, K.J., Wilson, E.L.: Stability and accuracy analysis of direct direction methods. Earthq. Eng. Struct. D 1, 283–291 (1973)

    Article  Google Scholar 

  32. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hulbert, G.M., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. J. 137, 175–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gobat, J.I., Grosenbaugh, M.A.: Application of the generalized-\(\alpha \) method to the time integration of the cable dynamics equations. Comput. Methods Appl. Mech. Eng. J. 190, 4817–4829 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11672019, 11372021, and 37686003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xing, Y. A three-parameter single-step time integration method for structural dynamic analysis. Acta Mech. Sin. 35, 112–128 (2019). https://doi.org/10.1007/s10409-018-0775-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0775-y

Keywords

Navigation