Skip to main content
Log in

Novel material tailoring method for internally pressurized FG spherical and cylindrical vessels

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented. It is assumed that the FG material is composed of an Al–SiC metallic-matrix composite. A uniform ratio of in-plane shear stress to yield strength [\(\varphi \left( r \right) \)] is used as the design criterion to utilize the maximum capacity of the vessel. The aim is to find a distribution of SiC particles in the radial direction, i.e., \(f\left( r \right) \), that achieves a uniform index \(\varphi \left( r \right) =\hbox {const}.\) through the wall thickness of the internally pressurized spherical or cylindrical vessel. Both the Mori–Tanaka and rule-of-mixtures homogenization schemes are used to express the effective elastic module and Poisson’s ratio. Moreover, the strength of the composite is expressed based on the rule of mixtures. Besides, finite element simulation is carried out to verify the accuracy of the analytical solution. The effects of input parameters such as the internal pressure, strength of the SiC particles, ratio of in-plane shear stress to effective yield strength, and choice of homogenization scheme on the tailored distribution of the SiC volume fraction in the radial direction are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ab :

Inner and outer radius of sphere or cylinder, respectively

u :

Radial displacement

c :

Constant value of in-plane shear stress divided by effective yield strength

\(f\left( r \right) \) :

Radial distribution of SiC particles

\(N_1 ,\,N_2 \) :

Constants related to material properties based on Mori–Tanaka homogenization

\(C_1-C_9 \) :

Constants related to material properties based on Mori–Tanaka homogenization

\(Z_1-Z_9 \) :

Constants related to material properties based on Mori–Tanaka homogenization

\(P_a ,P_b \) :

Internal and external pressure, respectively

E :

Elastic modulus

K :

Bulk modulus

Y :

Yield strength

\(\mu \) :

Shear modulus

\(\varphi \left( r \right) \) :

In-plane shear stress divided by effective yield strength

\(\varepsilon _r ,\varepsilon _\theta ,\varepsilon _\varphi \) :

Strains in radial, and first and second circumferential directions, respectively

\(\sigma _r ,\sigma _\theta \) :

Radial and circumferential stress, respectively

v :

Poisson’s ratio

\(\mathrm {p},\,\mathrm {m}\) :

Subscripts denoting particle andmatrix, respectively

MT (MTHS):

Subscript (abbreviation) for Mori–Tanaka homogenization scheme

RM (RMHS):

Subscript (abbreviation) for rule-of-mixtures homogenization scheme

References

  1. Loghman, A., Parsa, H.: Exact solution for magneto–thermo–elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer. Int. J. Mech. Sci. 88, 93–99 (2014)

    Article  Google Scholar 

  2. Jha, D., Kant, T., Singh, R.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  3. Rodrıguez-Castro, R., Wetherhold, R., Kelestemur, M.: Microstructure and mechanical behavior of functionally graded Al A359/SiC p composite. Mater. Sci. Eng. A 323, 445–456 (2002)

    Article  Google Scholar 

  4. Mahmoudi, T., Parvizi, A., Poursaeidi, E., et al.: Thermo-mechanical analysis of functionally graded wheel-mounted brake disk. J. Mech. Sci. Technol. 29, 4197–4204 (2015)

    Article  Google Scholar 

  5. Nosouhi Dehnavi, F., Parvizi, A.: Electrothermomechanical behaviors of spherical vessels with different configurations of functionally graded piezoelectric coating. J. Intel. Mat. Syst. Struct. 10.1177/1045389X17742737 (2017)

  6. Sharma, D., Sharma, J., Dhaliwal, S., et al.: Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta Mech. Sin. 30, 100–111 (2014)

    Article  MathSciNet  Google Scholar 

  7. Kim, Y.W.: Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells. Acta Mech. Sin. 31, 920–930 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dehnavi, F.N., Parvizi, A.: Investigation of thermo-elasto-plastic behavior of thick-walled spherical vessels with inner functionally graded coatings. Meccanica 52, 1–18 (2016)

    MathSciNet  Google Scholar 

  9. Eraslan, A., Akis, T.: On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mech. 181, 43–63 (2006)

    Article  Google Scholar 

  10. Ozturk, A., Gulgec, M.: Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation. Int. J. Eng. Sci. 49, 1047–1061 (2011)

    Article  Google Scholar 

  11. Keles, I., Conker, C.: Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties. Eur. J. Mech. A Sol. 30, 449–455 (2011)

    Article  Google Scholar 

  12. Tutuncu, N.: Stresses in thick-walled FGM cylinders with exponentially-varying properties. Eng. Struct. 29, 2032–2035 (2007)

    Article  Google Scholar 

  13. Parvizi, A., Naghdabadi, R., Arghavani, J.: Analysis of Al A359/SiCp functionally graded cylinder subjected to internal pressure and temperature gradient with elastic–plastic deformation. J. Therm. Stress. 34, 1054–1070 (2011)

    Article  Google Scholar 

  14. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos. Struct. 142, 45–56 (2016)

    Article  Google Scholar 

  15. Xin, L., Yang, S., Zhou, D., et al.: An approximate analytical solution based on the Mori-Tanaka method for functionally graded thick-walled tube subjected to internal pressure. Compos. Struct. 135, 74–82 (2016)

    Article  Google Scholar 

  16. Ebrahimi, F., Barati, M.R., Dabbagh, A.: A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Article  Google Scholar 

  17. Xin, L., Dui, G., Yang, S., et al.: Solutions for behavior of a functionally graded thick-walled tube subjected to mechanical and thermal loads. Int. J. Mech. Sci. 98, 70–79 (2015)

    Article  Google Scholar 

  18. Eslami, M., Babaei, M., Poultangari, R.: Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessels Pip. 82, 522–527 (2005)

    Article  Google Scholar 

  19. Jabbari, M., Sohrabpour, S., Eslami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Pip. 79, 493–497 (2002)

    Article  Google Scholar 

  20. Arefi, M.: Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder. Acta Mech. 224, 2771 (2013)

    Article  MathSciNet  Google Scholar 

  21. You, L., Zhang, J., You, X.: Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int. J. Press. Vessels Pip. 82, 347–354 (2005)

    Article  Google Scholar 

  22. Atashipour, S.A., Sburlati, R., Atashipour, S.R.: Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials. Meccanica 49, 2965–2978 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z., Zhang, Q., Xia, L., et al.: Thermomechanical analysis of pressure vessels with functionally graded material coating. J. Press. Vessel Technol. 138, 011205 (2016)

    Article  Google Scholar 

  24. Mohammadi, M., Saha, G.C., Akbarzadeh, A.H.: Elastic field in composite cylinders made of functionally graded coatings. Int. J. Eng. Sci. 101, 156–170 (2016)

    Article  Google Scholar 

  25. Parvizi, A., Alikarami, S., Asgari, M.: Exact solution for thermoelastoplastic behavior of thick-walled functionally graded sphere under combined pressure and temperature gradient loading. J. Therm. Stress. 39, 1152–1170 (2016)

    Article  Google Scholar 

  26. Alikarami, S., Parvizi, A.: Elasto–plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading. Sci. Eng. Compos. Mater. 24, 609–620 (2017)

    Article  Google Scholar 

  27. Cho, J.R., Ha, D.Y.: Volume fraction optimization for minimizing thermal stress in Ni–Al\(_2\)O\(_3\) functionally graded materials. Mat. Sci. Eng. A 334, 147–155 (2002)

    Article  Google Scholar 

  28. Taheri, A.H., Hassani, B., Moghaddam, N.Z.: Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach. Int. J. Sol. Struct. 51, 416–429 (2014)

    Article  Google Scholar 

  29. Nemat-Alla, M.: Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials. Acta Mech. 208, 147–161 (2009)

    Article  Google Scholar 

  30. Zhang, X.D., Hong, Y.L.: Li, A.H.: Optimization of axial symmetrical FGM under the transient-state temperate field. Int. J. Miner. Metall. Mat. 19, 59–63 (2012)

    Article  Google Scholar 

  31. Wang, Z.W., Zhang, Q., Xia, L.Z., et al.: Stress analysis and parameter optimization of an FGM pressure vessel subjected to thermo-mechanical loadings. Procedia Eng. 130, 374–389 (2015)

    Article  Google Scholar 

  32. Nie, G., Batra, R.: Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness. Compos. Struct. 92, 720–729 (2010)

    Article  Google Scholar 

  33. Nie, G., Batra, R.: Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders. Compos. Struct. 92, 265–274 (2010)

    Article  Google Scholar 

  34. Nie, G., Zhong, Z., Batra, R.: Material tailoring for orthotropic elastic rotating disks. Compos. Sci. Technol. 71, 406–414 (2011)

    Article  Google Scholar 

  35. Nie, G., Zhong, Z., Batra, R.: Material tailoring for functionally graded hollow cylinders and spheres. Compos. Sci. Technol. 71, 666–673 (2011)

    Article  Google Scholar 

  36. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mat. 6, 147–157 (1987)

    Article  Google Scholar 

  37. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)

    Google Scholar 

  38. Xin, L., Lu, W., Yang, S., et al.: Influence of linear work hardening on the elastic–plastic behavior of a functionally graded thick-walled tube. Acta Mech. 227, 2305–2321 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Parvizi.

Appendix A

Appendix A

The constants \(Z_1 -Z_9 \) in Eqs. (14) and (20) are given as follows

$$\begin{aligned} Z_1= & {} 9C_1 N_1^2,\nonumber \\ Z_2= & {} 9\left( {C_2 N_1 -2C_1 N_1 N_2 } \right) ,\nonumber \\ Z_3= & {} 9\left( {C_1 N_2^2 +C_3 -C_2 N_2 } \right) ,\nonumber \\ Z_4= & {} C_4 N_1^2,\nonumber \\ Z_5= & {} \left( {C_5 N_1 -2C_4 N_1 N_2 } \right) ,\nonumber \\ Z_6= & {} {C_4 N_2^2 +C_6 -C_5 N_2 } ,\nonumber \\ Z_7= & {} C_7 N_1^2 /2,\nonumber \\ Z_8= & {} \left( {C_8 N_1 -2C_7 N_1 N_2 } \right) /2,\nonumber \\ Z_9= & {} \left( C_7 N_2^2 +C_9 -C_8 N_2 \right) /2, \end{aligned}$$
(A1)

where \(N_1 -N_2 \) and \(C_1 -C_9 \) are \(N_1 =\frac{1}{c\left( {i+1} \right) (Y_\mathrm{p} -Y_\mathrm{m} )}\) (\(i=0\) for cylinder and \(i=1\) for sphere) and

$$\begin{aligned}&N_2 =\frac{Y_\mathrm{m} }{Y_\mathrm{p} -Y_\mathrm{m} }, \end{aligned}$$
(A2)
$$\begin{aligned}&C_1 =(a_5 a_8 +a_6 )(a_1 a_4 +a_2 ),\nonumber \\&C_2 =(a_1 a_4 +a_2 )a_5 a_7 +(a_5 a_8 +a_6 )a_1 a_3,\nonumber \\&C_3 =a_5 a_1 a_7 a_3,\nonumber \\&C_4 =a_4 a_6 +a_5 a_4 a_8 +3a_1 a_4 a_8 +3a_2 a_8,\nonumber \\&C_5 =a_5 a_7 a_4 +3a_1 a_7 a_4 +a_5 a_8 a_3 +3a_1 a_8 a_3 \nonumber \\ {}&\quad +\,a_6 a_3 +3a_2 a_7,\nonumber \\&C_6 =a_5 a_7 a_3 +3a_1 a_7 a_3,\nonumber \\&C_7 =-\,2a_4 a_6 -2a_5 a_4 a_8 +3a_1 a_4 a_8 +3a_2 a_8,\nonumber \\&C_8=-\,2a_5 a_7 a_4 +3a_1 a_7 a_4 -2a_5 a_8 a_3 +3a_1 a_8 a_3\nonumber \\&\quad -\,2a_6 a_3 +3a_2 a_7,\nonumber \\&C_9 =3a_1 a_7 a_3 -2a_5 a_7 a_3, \end{aligned}$$
(A3)

and \(a_1-a_9 \) are

$$\begin{aligned} a_1= & {} K_\mathrm{m},\nonumber \\ a_2= & {} (K_\mathrm{p} -K_\mathrm{m} )(3K_\mathrm{m} +4\mu _\mathrm{m} ),\nonumber \\ a_3= & {} 3(K_\mathrm{p} -K_\mathrm{m} )+(3K_\mathrm{m} +4\mu _\mathrm{m} ),\nonumber \\ a_4= & {} -\,3(K_\mathrm{p} -K_\mathrm{m} ),\nonumber \\ a_5= & {} \mu _\mathrm{m},\nonumber \\ a_6= & {} 5G_\mathrm{m} (\mu _\mathrm{p} -\mu _\mathrm{m} )(3K_\mathrm{m} +4\mu _\mathrm{m} ),\nonumber \\ a_7= & {} 5\mu _\mathrm{m} (3K_\mathrm{m} +4\mu _\mathrm{m} )+6(\mu _\mathrm{p} -\mu _\mathrm{m} )(2\mu _\mathrm{m} +K_\mathrm{m} ),\nonumber \\ a_8= & {} -\,6(\mu _\mathrm{p} -\mu _\mathrm{m} )(2\mu _\mathrm{m} +K_\mathrm{m} ). \end{aligned}$$
(A4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosouhi Dehnavi, F., Parvizi, A. & Abrinia, K. Novel material tailoring method for internally pressurized FG spherical and cylindrical vessels. Acta Mech. Sin. 34, 936–948 (2018). https://doi.org/10.1007/s10409-018-0772-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0772-1

Keywords

Navigation