Skip to main content
Log in

Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles \((\hbox {LiMn}_{2}\hbox {O}_{4})\) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016)

    Article  Google Scholar 

  2. Chiang, Y.M.: Building a better battery. Nature 330, 1485–1486 (2010)

    Google Scholar 

  3. Ebner, M., Marone, F., Stampanoni, M., et al.: Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries. Science 342, 716–720 (2013)

    Article  Google Scholar 

  4. Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    Article  Google Scholar 

  5. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  6. Xu, R., Zhao, K.: Electrochemomechanics of electrodes in Li-ion batteries: a review. J. Electrochem. Energy 13, 030803 (2016)

    Google Scholar 

  7. Kabir, M.M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986 (2017)

    Article  Google Scholar 

  8. Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)

    Article  Google Scholar 

  9. Guo, Z.S., Zhu, J., Feng, J., et al.: Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv. 5, 69514–69521 (2015)

    Article  Google Scholar 

  10. Mukhopadhyay, A., Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014)

    Article  Google Scholar 

  11. Lin, X., Lu, W.: A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application. J. Power Sources 357, 220–229 (2017)

    Article  Google Scholar 

  12. Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998)

    Article  Google Scholar 

  13. Deshpande, R., Verbrugge, M., Cheng, Y.T., et al.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730–A1738 (2012)

    Article  Google Scholar 

  14. Lee, S.W., Lee, H.W., Ryu, I., et al.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015)

    Article  Google Scholar 

  15. Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019–A1030 (2005)

    Article  Google Scholar 

  16. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)

    Article  Google Scholar 

  17. Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007)

    Article  Google Scholar 

  18. Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)

    Article  Google Scholar 

  19. Korsunsky, A.M., Sui, T., Song, B.: Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater. Des. 69, 247–252 (2015)

    Article  Google Scholar 

  20. Zhang, X., Hao, F., Chen, H., et al.: Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J. Electrochem. Soc. 161, A2243–A2249 (2014)

    Article  Google Scholar 

  21. Lu, Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30, 248–253 (2017)

    Article  Google Scholar 

  22. Ji, L., Guo, Z.: Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress. Acta Mech. Sin. https://doi.org/10.1007/s10409-017-0704-5 (in press)

  23. Zhu, M., Park, J., Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012)

    Article  Google Scholar 

  24. Grantab, R., Shenoy, V.B.: Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 159, A584–A591 (2012)

    Article  Google Scholar 

  25. Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J. Mech. Phys. Solids 92, 313–344 (2016)

    Article  Google Scholar 

  26. Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li extraction and insertion within the second half cycle. J. Power Sources 331, 32–42 (2016)

    Article  Google Scholar 

  27. Zhao, K., Pharr, M., Vlassak, J.J., et al.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010)

    Article  Google Scholar 

  28. Woodford, W.H., Chiang, Y.M., Carter, W.C.: "Electrochemical shock" of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010)

    Article  Google Scholar 

  29. Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012)

    Article  Google Scholar 

  30. Gao, Y.F., Zhou, M.: Coupled mechano-diffusional driving forces for fracture in electrode materials. J. Power Sources 230, 176–193 (2013)

    Article  Google Scholar 

  31. Lei, H.J., Wang, H.L., Liu, B., et al.: Quantitative law of diffusion induced fracture. Acta. Mech. Sin. 32, 611–632 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Jang, Y.I., Huang, B., et al.: TEM study of electrochemical cycling-induced damage and disorder in \(\text{ LiCoO }_{2}\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146, 473–480 (1999)

    Article  Google Scholar 

  33. Lim, M.R., Cho, W.I., Kim, K.B.: Preparation and characterization of gold-codeposited \(\text{ LiMn }_{2}\text{ O }_{4}\) electrodes. J. Power Sources 92, 168–176 (2001)

    Article  Google Scholar 

  34. Ohzuku, T., Tomura, H., Sawai, K.: Monitoring of particle fracture by acoustic emission during charge and discharge of \(\text{ Li }/\text{ MnO }_{2}\) cells. J. Electrochem. Soc. 144, 3496–3500 (1997)

    Article  Google Scholar 

  35. Gabrisch, H., Wilcox, J., Doeff, M.M.: TEM study of fracturing in spherical and plate-like \(\text{ LiFePO }_{4}\) particles. Electrochem. Solid State Lett. 11, A25–A29 (2008)

    Article  Google Scholar 

  36. Wang, D., Wu, X., Wang, Z., et al.: Cracking causing cyclic instability of LiFePO\(_{4}\) cathode material. J. Power Sources 140, 125–128 (2005)

    Article  Google Scholar 

  37. Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)

    Article  Google Scholar 

  38. Lin, N., Jia, Z., Wang, Z., et al.: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy. J. Power Sources 365, 235–239 (2017)

    Article  Google Scholar 

  39. Zhang, H.L., Li, F., Liu, C., et al.: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205–22211 (2005)

    Article  Google Scholar 

  40. Takahashi, K., Srinivasan, V.: Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J. Electrochem. Soc. 162, A635–A645 (2015)

    Article  Google Scholar 

  41. Ebner, M., Geldmacher, F., Marone, F., et al.: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013)

    Article  Google Scholar 

  42. Bhattacharya, S., Riahi, A.R., Alpas, A.T.: A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 196, 8719–8727 (2011)

    Article  Google Scholar 

  43. Choi, Y.S., Pharr, M., Kang, C.S., et al.: Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. J. Power Sources 265, 160–165 (2014)

    Article  Google Scholar 

  44. Harris, S.J., Deshpande, R.D., Qi, Y., et al.: Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25, 1433–1440 (2015)

    Article  Google Scholar 

  45. Hu, Y., Zhao, X., Suo, Z.: Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 25, 1007–1010 (2011)

    Article  Google Scholar 

  46. He, X., Li, J., Cai, Y., et al.: Preparation of spherical spinel \(\text{ LiMn }_{2}{\text{ O }}_{4}\), cathode material for Li-ion batteries. Mater. Chem. Phys. 95, 105–108 (2006)

    Article  Google Scholar 

  47. ABAQUS/Standard: Version 6.16. Hibbitt, Karlsson, Serensen, Inc. (2016)

  48. Sun, G., Bhattacharya, S., Alpas, A.T.: Cyclic strain-induced crack growth in graphite during electrochemical testing in propylene carbonate-based Li-ion battery electrolytes. J. Mater. Sci. 53, 1297–1309 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (11472165 and 11332005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhansheng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, Z. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors. Acta Mech. Sin. 34, 706–715 (2018). https://doi.org/10.1007/s10409-018-0764-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0764-1

Keywords

Navigation