Skip to main content
Log in

Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Eringen’s nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler–Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peng, X.L., Li, X.F., Tang, G.J.: Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. ZAMM. Z. Angew. Math. Mech. 95, 1428–1438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ansari, R., Gholami, R., Rouhi, H.: Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126, 216–226 (2015)

    Article  Google Scholar 

  3. Cajic, M., Karlicic, D., Lazarevic, M.: Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor. Appl. Mech. 42, 167–190 (2015)

    Article  Google Scholar 

  4. Yan, Z., Wei, C., Zhang, C.: Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method. Acta Mech. Sin. 33, 415–428 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ansari, R., Faraji Oskouie, M., Sadeghi, F.: Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E 74, 318–327 (2015)

    Article  Google Scholar 

  6. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)

    Article  MathSciNet  Google Scholar 

  7. Vatankhah, R., Kahrobaiyan, M.H., Alasti, A.: Nonlinear forced vibration strain gradient microbeams. Appl. Math. Model. 37, 8363–8382 (2013)

    Article  MathSciNet  Google Scholar 

  8. Al-Basyouni, K.S., Tounsi, A., Mahmoud, S.R.: Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position. Compos. Struct. 125, 621–630 (2015)

    Article  Google Scholar 

  9. Mohammadi, H., Mahzoon, M.: Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory. IJST Trans. Mech. Eng. 38, 303–320 (2014)

    Google Scholar 

  10. Ansari, R., Pourashraf, T., Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct. 93, 169–176 (2015)

    Article  Google Scholar 

  11. Chiu, M.S., Chen, T.: Bending and Resonance Behavior of Nanowires Based on Timoshenko Beam Theory with High-Order Surface Stress Effects. Physica E 54, 149–156 (2013)

    Article  Google Scholar 

  12. Ansari, R., Gholami, R., Norouzzadeh, A.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sin. 31, 708–719 (2015)

    Article  MathSciNet  Google Scholar 

  13. Amirian, B., Hosseini-Ara, R., Moosavi, H.: Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl. Math. Mech. 35, 875–886 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ansari, R., Mohammdi, V., Faghih Shojaei, M.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B 52, 199–206 (2013)

    Article  Google Scholar 

  16. Ansari, R., Hosseini, K., Darvizeh, A.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219, 4977–4991 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  Google Scholar 

  18. Krumhansl, J.: Some considerations of the relation between solid state physics and generalized continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, IUTAM Symposia, Springer, Berlin, 298–311 (1968)

    Chapter  Google Scholar 

  19. Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocations. In: Mechanics of Generalized Continua, IUTAM symposia, Springer, Berlin, 321–329 (1968)

    Chapter  Google Scholar 

  20. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  21. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  22. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  23. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  24. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)

    Article  MathSciNet  Google Scholar 

  25. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  26. Challamel, N., Wang, C.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  27. Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)

    Article  MathSciNet  Google Scholar 

  28. Challamel, N., Zhang, Z., Wang, C.M.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)

    Article  Google Scholar 

  29. Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beam accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–77 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Y.: Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int. J. Mech. Sci. 128–129, 572–582 (2017)

    Article  Google Scholar 

  31. Fernández-Sáez, J., Zaera, R., Loya, J.A.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  Google Scholar 

  32. Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  33. Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88, 194–200 (2017)

    Article  Google Scholar 

  34. Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)

    Article  Google Scholar 

  35. Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)

    Article  Google Scholar 

  36. Koutsoumaris, C.Chr., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Article  Google Scholar 

  37. Shaat, M.: An iterative-based nonlocal elasticity for Kirchhoff plates. Int. J. Mech. Sci. 90, 162–170 (2015)

    Article  MathSciNet  Google Scholar 

  38. Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017)

    Article  Google Scholar 

  39. Shaat, M.: A general nonlocal theory and its approximations for slowly varying acoustic waves. Int. J. Mech. Sci. 130, 52–63 (2017)

    Article  Google Scholar 

  40. Romano, G., Barretta, R., Diaco, M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  41. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  42. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  43. Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)

    Article  Google Scholar 

  44. Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)

    Article  Google Scholar 

  45. Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Nano-beams under torsion: a stress-driven nonlocal approach. PSU Res. Rev. 1, 164–169 (2017)

    Article  Google Scholar 

  46. Apuzzo, A., Barretta, R., Luciano, R., et al.: Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskouie, M.F., Ansari, R. & Rouhi, H. Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mech. Sin. 34, 871–882 (2018). https://doi.org/10.1007/s10409-018-0757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0757-0

Keywords

Navigation