Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 3, pp 589–599 | Cite as

Non-contact tensile viscoelastic characterization of microscale biological materials

  • Yuhui Li
  • Yuan Hong
  • Guang-Kui Xu
  • Shaobao Liu
  • Qiang Shi
  • Deding Tang
  • Hui Yang
  • Guy M. Genin
  • Tian Jian Lu
  • Feng Xu
Research Paper

Abstract

Many structures and materials in nature and physiology have important “meso-scale” structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

Keywords

Mechanical testing Hierarchical biomaterials Non-contact actuation Microscale analysis 

Notes

Acknowledgements

This project was partially supported by the National Natural Science Foundation of China (Grants 11532009, 11372243, and 11522219) and the China Postdoctoral Science Foundation (Grant 2016M602810). This project was also supported by the Initiative Postdocs Supporting Program (Grant BX201600121).

References

  1. 1.
    Meyers, M.A., McKittrick, J., Chen, P.Y.: Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Wright, K.E., Birch, M.A.: Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering. Acta Mech. Sin. 30, 2–6 (2013)CrossRefGoogle Scholar
  3. 3.
    Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. Mech. Phys. Solids 52, 1963–1990 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lin, S.Z., Li, B., Feng, X.Q.: A dynamic cellular vertex model of growing epithelial tissues. Acta Mech. Sin. 33, 250–259 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2006)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Huang, G., Gao, B., et al.: Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Mater. 8, e238 (2016)CrossRefGoogle Scholar
  7. 7.
    Reznikov, N., Shahar, R., Weiner, S.: Bone hierarchical structure in three dimensions. Acta Biomater. 10, 3815–3826 (2014)CrossRefGoogle Scholar
  8. 8.
    Alexander, B., Daulton, T.L., Genin, G.M., et al.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface 9, 1774–1786 (2012)CrossRefGoogle Scholar
  9. 9.
    Screen, H.R.C., Leem, D.A., Baderm, D.L., et al.: An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. IME H J. Eng. Med. 218, 109–119 (2004)CrossRefGoogle Scholar
  10. 10.
    Svensson, R.B., Hansen, P., Hassenkam, T., et al.: Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. J. Appl. Physiol. 112, 419–426 (2012)CrossRefGoogle Scholar
  11. 11.
    Long, R., Hui, C.Y.: Crack buckling in soft gels under compression. Acta Mech. Sin. 28, 1098–1105 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Stammen, J.A., Williams, S., Ku, D.N., et al.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001)CrossRefGoogle Scholar
  13. 13.
    Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3, 211–221 (1970)CrossRefGoogle Scholar
  14. 14.
    Zhang, T., Yuk, H., Lin, S., et al.: Tough and tunable adhesion of hydrogels: experiments and models. Acta Mech. Sin. 3, 1–12 (2017)Google Scholar
  15. 15.
    Chaudhuri, O., Gu, L., Klumpers, D., et al.: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326 (2016)CrossRefGoogle Scholar
  16. 16.
    Chaudhuri, O., Gu, L., Darnell, M., et al.: Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015)CrossRefGoogle Scholar
  17. 17.
    Henderson, E., Haydon, P.G., Sakaguchi, D.S.: Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1947 (1992)CrossRefGoogle Scholar
  18. 18.
    Radmacher, M., Tillmann, R.W., Fritz, M., et al.: From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1906 (1992)CrossRefGoogle Scholar
  19. 19.
    Yang, H.: Atomic Force Microscopy (AFM), Principles, Modes of Operation and Limitations. NOVA, New York (2014)Google Scholar
  20. 20.
    Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)CrossRefGoogle Scholar
  21. 21.
    Hogan, B., Babataheri, A., Hwang, Y., et al.: Characterizing cell adhesion by using micropipette aspiration. Biophys. J. 109, 209–219 (2015)CrossRefGoogle Scholar
  22. 22.
    Dowling, N.E.: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  23. 23.
    Drury, J.L., Dennis, R.G., Mooney, D.J.: The tensile properties of alginate hydrogels. Biomaterials 25, 3187–3199 (2004)CrossRefGoogle Scholar
  24. 24.
    Chasiotis, I., Knauss, W.G.: A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp. Mech. 42, 51–57 (2002)CrossRefGoogle Scholar
  25. 25.
    Thomson, N.H., Fritz, M., Radmacher, M., et al.: Protein tracking and detection of protein motion using atomic force microscopy. Biophys. J. 70, 2421–2431 (1996)CrossRefGoogle Scholar
  26. 26.
    Schitter, G., Astrom, K.J., DeMartini, B.E., et al.: Design and modeling of a high-speed AFM-scanner. IEEE Trans. Control Syst. Technol. 15, 906–915 (2007)CrossRefGoogle Scholar
  27. 27.
    Kim, J.H., Nizami, A., Hwangbo, Y., et al.: Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013)Google Scholar
  28. 28.
    Savin, T., Shyer, A.E., Mahadevan, L.: A method for tensile tests of biological tissues at the mesoscale. J. Appl. Phys. 111, 074704 (2012)CrossRefGoogle Scholar
  29. 29.
    Souza, G.R., Molina, J.R., Raphael, R.M., et al.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)CrossRefGoogle Scholar
  30. 30.
    Sakar, M.S., Eyckmans, J., Pieters, R., et al.: Nat. Commun. 7, 11036 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhao, R., Boudou, T., Wang, W.G., et al.: Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv. Mater. 25, 1699–1705 (2013)CrossRefGoogle Scholar
  32. 32.
    Li, Y., Huang, G., Zhang, X., et al.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23, 660–672 (2013)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Poon, C.T., Li, M., et al.: Chinese-noodle-inspired muscle myofiber fabrication. Adv. Funct. Mater. 25, 5999–6008 (2015)CrossRefGoogle Scholar
  34. 34.
    Sun, J.Y., Zhao, X., Illeperuma, W.R.K., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)CrossRefGoogle Scholar
  35. 35.
    Zhao, X.: Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014)CrossRefGoogle Scholar
  36. 36.
    Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., et al.: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015)CrossRefGoogle Scholar
  37. 37.
    Lai, T.C., Yu, J., Tsai, W.B., et al.: Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J. Mater. Chem. B 4, 2304–2313 (2016)Google Scholar
  38. 38.
    Marc, A.M., Po, Y.C., Albert, M.L., et al.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuhui Li
    • 1
    • 2
  • Yuan Hong
    • 1
    • 2
  • Guang-Kui Xu
    • 3
  • Shaobao Liu
    • 2
  • Qiang Shi
    • 1
    • 2
  • Deding Tang
    • 1
    • 2
  • Hui Yang
    • 4
  • Guy M. Genin
    • 1
    • 2
    • 5
  • Tian Jian Lu
    • 2
  • Feng Xu
    • 1
    • 2
  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and Technology, Xi’an Jiaotong UniversityXi’anChina
  2. 2.Biomedical Engineering and Biomechanics Center (BEBC)Xi’an Jiaotong UniversityXi’anChina
  3. 3.International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  4. 4.School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
  5. 5.The NSF Science and Technology Center for Engineering Mechano-BiologyWashington UniversitySaint LouisUSA

Personalised recommendations