Acta Mechanica Sinica

, Volume 34, Issue 3, pp 507–514 | Cite as

A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

  • Z. M. Zheng
  • B. Wang
Research Paper


Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.


Nanofluid Thermal conductivity Modeling Agglomeration Radial distribution function 



This work was supported by the National Natural Science Foundation of China (Grants 11472313, 11232015, and 11572355) and the Guangdong Province Research Fund for Applied Research.


  1. 1.
    Choi, S.U.S., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: International mechanical engineering congress and exhibition, San Francisco, Nov. 12–17 (1995)Google Scholar
  2. 2.
    Lee, S., Choi, S.U.S., Li, S., et al.: Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 121, 280–9 (1999)CrossRefGoogle Scholar
  3. 3.
    Eastman, J.A., Choi, S.U.S., Li, S., et al.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRefGoogle Scholar
  4. 4.
    Das, S.K., Putra, N., Thiesen, P., et al.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)CrossRefGoogle Scholar
  5. 5.
    Kang, H.U., Kim, S.H., Oh, J.M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transf. 19, 181–191 (2006)CrossRefGoogle Scholar
  6. 6.
    Karthikeyan, N.R., Philip, J., Raj, B.: Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 109, 50–55 (2008)CrossRefGoogle Scholar
  7. 7.
    Mintsa, H.A., Roy, G., Nguyen, C.T., et al.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)CrossRefGoogle Scholar
  8. 8.
    Kole, M., Dey, T.K.: Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl. Therm. Eng. 56, 45–53 (2013)CrossRefGoogle Scholar
  9. 9.
    Lu, S.Y., Song, J.L.: Effective conductivity of composites with spherical inclusions: effect of coating and detachment. J. Appl. Phys. 79, 609–618 (1996)CrossRefGoogle Scholar
  10. 10.
    Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nano. Res. 5, 167–171 (2003)CrossRefGoogle Scholar
  11. 11.
    Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J. Nano. Res. 6, 355–361 (2014)CrossRefGoogle Scholar
  12. 12.
    Xue, Q., Xu, W.M.: A model of thermal conductivity of nanofluids with interfacial shells. Mater. Chem. Phys. 90, 298–301 (2005)CrossRefGoogle Scholar
  13. 13.
    Rizvi, I.H., Jain, A., Ghosh, S.K., et al.: Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 49, 595–600 (2013)CrossRefGoogle Scholar
  14. 14.
    Jiang, H., Xu, Q., Huang, C., et al.: The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl. Phys. A 118, 197–205 (2015)CrossRefGoogle Scholar
  15. 15.
    Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRefGoogle Scholar
  16. 16.
    Keblinski, P., Prasher, R., Eapen, J.: Thermal conductance of nanofluids: Is the controversy over? J. Nano. Res. 10, 1089–1097 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, B.X., Zhou, L.P., Peng, X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Prasher, R., Evans, W., Meakin, P., et al.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)CrossRefGoogle Scholar
  19. 19.
    Feng, Y., Yu, B., Xu, P., et al.: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J. Phys. D: Appl. Phys. 40, 3164 (2007)CrossRefGoogle Scholar
  20. 20.
    Zhou, D., Wu, H.: A thermal conductivity model of nanofluids based on particle size distribution analysis. Appl. Phys. Lett. 105, 083117 (2014)CrossRefGoogle Scholar
  21. 21.
    Xiao, B., Yang, Y., Chen, L.: Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol. 239, 409–414 (2013)CrossRefGoogle Scholar
  22. 22.
    Jeffrey, D.J.: Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 335, 355–367 (1973)CrossRefGoogle Scholar
  23. 23.
    Chiew, Y.C., Glandt, E.D.: The effect of structure on the conductivity of a dispersion. J. Colloid Interface Sci. 94, 90–104 (1983)CrossRefGoogle Scholar
  24. 24.
    Chiew, Y.C., Glandt, E.D.: Effective conductivity of dispersions: the effect of resistance at the particle surfaces. Chem. Eng. Sci. 42, 2677–2685 (1987)CrossRefGoogle Scholar
  25. 25.
    Maxwell, J.C.: Electricity and Magnetism. Clarendon Press, Oxford (1873)zbMATHGoogle Scholar
  26. 26.
    Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1, 187–191 (1962)CrossRefGoogle Scholar
  27. 27.
    Murshed, S.M.S., Leong, K.C., Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008)Google Scholar
  28. 28.
    Sui, J., Zheng, L.C., Zhang, X.X., et al.: A novel equivalent agglomeration model for heat conduction enhancement in nanofluids. Sci. Rep. 6, 19560 (2016)CrossRefGoogle Scholar
  29. 29.
    Verlet, L., Weis, J.J.: Equilibrium theory of simple liquids. Phys. Rev. A 5, 939–952 (1972)CrossRefGoogle Scholar
  30. 30.
    Liang, Z., Tsai, H.L.: Thermal conductivity of interfacial layers in nanofluids. Phys. Rev. E 83, 041602 (2011)CrossRefGoogle Scholar
  31. 31.
    Tso, C.Y., Fu, S.C., Chao, C.Y.: A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 70, 202–214 (2014)CrossRefGoogle Scholar
  32. 32.
    Xie, H., Fujii, M., Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sohrabi, N., Masoumi, N., Behzadmehr, A., et al.: A simple analytical model for calculating the effective thermal conductivity of nanofluids. Heat Transf. Asian Res. 39, 141–150 (2010)Google Scholar
  34. 34.
    Xue, L., Keblinski, P., Phillpot, S.R., et al.: Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transf. 47, 4277–4284 (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    Yu, C.J., Richter, A.G., Datta, A., et al.: Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B: Cond. Mater. 283, 27–31 (2000)CrossRefGoogle Scholar
  36. 36.
    Xue, Q.Z.: Model for effective thermal conductivity of nanofluids. Phys. Lett. A 307, 313–317 (2003)CrossRefGoogle Scholar
  37. 37.
    Firlar, E., Çınar, S., Kashyap, S., et al.: Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ. Sci. Rep. 5, 9830 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsSun Yat-Sen UniversityGuangzhouChina
  2. 2.Institut Franco-Chinois de l’Energie NucléaireSun Yat-Sen UniversityZhuhaiChina

Personalised recommendations