Skip to main content
Log in

Density enhancement mechanism of upwind schemes for low Mach number flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation \({{\tilde{\rho }} {\tilde{a}} {\tilde{U}}\varDelta U}\). It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term \(D^P\) and the velocity-difference dissipation term in the momentum equation \(D^{\rho U}\) to the order of \(O(c^{-1})\) and \(O(c^{0})\) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zheng, X., Zhou, S., Hou, A., et al.: Separation control using synthetic vortex generator jets in axial compressor cascade. Acta Mech. Sin. 22, 521–527 (2006)

    Article  Google Scholar 

  2. Xu, G., Jiang, X., Liu, G.: Delayed detached eddy simulations of fighter aircraft at high angle of attack. Acta Mech. Sin. 32, 588–603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zheng, W., Yan, C., Liu, H., et al.: Comparative assessment of SAS and DES turbulence modeling for massively separated flows. Acta Mech. Sin. 32, 12–21 (2016)

    Article  Google Scholar 

  4. Fang, J., Lu, L.-P., Shao, L.: Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation. Acta Mech. Sin. 26, 391–399 (2010)

    Article  MATH  Google Scholar 

  5. Turkel, E.: Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)

    Article  MathSciNet  Google Scholar 

  6. Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995)

    Article  MATH  Google Scholar 

  7. Guillard, H., Viozat, C.: On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28, 63–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Roe, P.L., Pike, J.: Efficient construction and utilisation of approximate Riemann solutions. In: Computing Methods in Applied Sciences and Engineering, VI, North Holland, 499–518 (1984)

  9. Boniface, J.-C.: Rescaling of the Roe scheme in low Mach-number flow regions. J. Comput. Phys. 328, 177–199 (2017)

    Article  MathSciNet  Google Scholar 

  10. Li, X.-S., Gu, C.-W.: Mechanism of Roe-type schemes for all-speed flows and its application. Comput. Fluids 86, 56–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X., Gu, C.: An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour. J. Comput. Phys. 227, 5144–5159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X.-S., Gu, C.-W., Xu, J.-Z.: Development of Roe-type scheme for all-speed flows based on preconditioning method. Comput. Fluids 38, 810–817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Thornber, B.J.R., Drikakis, D.: Numerical dissipation of upwind schemes in low Mach flow. Int. J. Numer. Methods Fluids 56, 1535–1541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rieper, F.: A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230, 5263–5287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fillion, P., Chanoine, A., Dellacherie, S., et al.: FLICA-OVAP: a new platform for core thermalhydraulic studies. Nucl. Eng. Des. 241, 4348–4358 (2011)

    Article  Google Scholar 

  16. Li, X.-S.: Uniform algorithm for all-speed shock-capturing schemes. Int. J. Comput. Fluid Dyn. 28, 329–338 (2014)

    Article  MathSciNet  Google Scholar 

  17. Qu, F., Yan, C., Sun, D., et al.: A new Roe-type scheme for all speeds. Comput. Fluids 121, 11–25 (2015)

    Article  MathSciNet  Google Scholar 

  18. Sun, D., Yan, C., Qu, F., et al.: A robust flux splitting method with low dissipation for all-speed flows. Int. J. Numer. Methods Fluids 84, 3–18 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liou, M.S.: A sequel to \(\{\text{ AUSM: } \text{ AUSM }\}^+\). J. Computat. Phys. 129, 364–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liou, M.: A sequel to AUSM, part II: AUSM+-up for all speeds. J. Comput. Phys. 214, 137–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shima, E., Kitamura, K.: Parameter-free simple low-dissipation AUSM-family scheme for all speeds. AIAA J. 49, 1693–1709 (2011)

    Article  Google Scholar 

  23. Kitamura, K., Shima, E., Fujimoto, K., et al.: Performance of low-dissipation euler fluxes and preconditioned LU-SGS at low speeds. Commun. Comput. Phys. 10, 90–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shima, E., Kitamura, K.: New approaches for computation of low Mach number flows. Comput. Fluids 85, 143–152 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yao, S.B., Sun, Z.X., Guo, D.L., et al.: Numerical study on wake characteristics of high-speed trains. Acta Mech. Sin. 29, 811–822 (2013)

  26. Guo, D., Shang, K., Zhang, Y., et al.: Influences of affiliated components and train length on the train wind. Acta Mech. Sin. 32, 191–205 (2016)

  27. Xiao, Z., Fu, S.: Studies of the unsteady supersonic base flows around three afterbodies. Acta Mech. Sin. 25, 471–479 (2009)

    Article  MATH  Google Scholar 

  28. Qu, F., Yan, C., Sun, D.: Investigation into the influences of the low speed’s accuracy on the hypersonic heating computations. Int. Commun. Heat Mass Transf. 70, 53–58 (2016)

    Article  Google Scholar 

  29. Qu, F., Sun, D., Shi, Y., et al.: Investigation into the influences of the low speeds’ accuracy on RANS simulations. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 1–14 (2017)

  30. Zha, G., Bilgen, E.: Numerical solutions of Euler equations by using a new flux vector splitting scheme. Int. J. Numer. Methods Fluids 17, 115–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toro, E.F., Vazquez-Cendon, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qu, F., Yan, C., Yu, J., et al.: A new flux splitting scheme for the Euler equations. Comput. Fluids 102, 203–214 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kapen, P.T., Tchuen, G.: An extension of the TV-HLL scheme for multi-dimensional compressible flows. Int. J. Comput. Fluid Dyn. 29, 303–312 (2015)

    Article  MathSciNet  Google Scholar 

  34. Xie, W., Li, H., Tian, Z., et al.: A low diffusion flux splitting method for inviscid compressible flows. Comput. Fluids 112, 83–93 (2015)

    Article  MathSciNet  Google Scholar 

  35. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  36. Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189, 305–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tong, B.G., Kong, X.Y., Deng, G.H.: Gas Dynamics, 2nd edn. Higher Education Press, Beijing (2012). (in Chinese)

  38. Gresho, P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: theory. Int. J. Numer. Methods Fluids 11, 620–687 (1990)

  39. Gresho, P.M., Chan, S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: implementation. Int. J. Numer. Methods Fluids 11, 621–659 (1990)

    Article  MATH  Google Scholar 

  40. Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Ishiko, K., Ohnishi, N., Sawada, K.: Implicit LES for Two-Dimensional Turbulence Using Shock Capturing Monotone Scheme. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1–12 (2006)

  42. Kitamura, K., Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations. Comput. Fluids 126, 41–57 (2016)

    Article  MathSciNet  Google Scholar 

  43. Yoon, S., Jamesont, A.: Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 26, 1025–1026 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support for this work provided by the National Natural Science Foundation of China (Grant 11402016), and all the authors are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, BX., Yan, C. & Chen, SS. Density enhancement mechanism of upwind schemes for low Mach number flows. Acta Mech. Sin. 34, 431–445 (2018). https://doi.org/10.1007/s10409-017-0737-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0737-9

Keywords

Navigation