Skip to main content
Log in

A general solution for one dimensional chemo-mechanical coupled hydrogel rod

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Smart hydrogels are environmentally sensitive hydrogels, which can produce a sensitive response to external stimuli, and often exhibit the characteristics of multi filed coupling. In this paper, a hydrogel rod under chemo-mechanical coupling was analytically studied based on a poroelastical model. The already known constitutive and governing equations were simplified into the one dimensional case, then two different boundary conditions were considered. The expressions of concentration, displacement, chemical potential and stress related to time were obtained in a series form. Examples illustrate the interaction mechanism of chemical and mechanical effect. It was found that there was a balance state in the diffusion of concentration and the diffusion process could lead to the expansion or the stress change of the hydrogel rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Richter, A., Howitz, S., Kuckling, D., et al.: Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens. Actuators B Chem. 99, 451–458 (2004)

    Article  Google Scholar 

  2. Carpi, F., Menon, C., De Rossi, D.: Bio-inspired distributed electroactive polymer actuators for possible space applications: concept design. Adv. Sci. Technol. 61, 180–185 (2008)

    Article  Google Scholar 

  3. Huang, J.Y., Wang, L.L., Xiong, C.Y., et al.: Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 98, 103–12 (2016)

    Article  Google Scholar 

  4. Hsiao, M.H., Chiou, S.H., Larsson, M., et al.: A temperature-induced and shear-reversible assembly of latanoprost-loaded amphiphilic chitosan colloids: characterization and in vivo glaucoma treatment. Acta Biomater. 10, 3188–3196 (2014)

    Article  Google Scholar 

  5. Geesala, R., Bar, N., Dhoke, N.R., et al.: Porous polymer scaffold for on-site delivery of stem cells-Protects from oxidative stress and potentiates wound tissue repair. Biomaterials 77, 1–13 (2016)

    Article  Google Scholar 

  6. Wang, Q.-M., Mohan, A.C., Oyen, M.L., et al.: Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta. Mech. Sin. 30, 20–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kang, B., Dai, Y.-D., Shen, X.-H., et al.: Dynamical modeling and experimental evidence on the swelling/deswelling behaviors of pH sensitive hydrogels. Mater. Lett. 62, 3444–3446 (2008)

    Article  Google Scholar 

  8. Kim, S.J., Park, S.J., Kim, I.Y., et al.: Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. J. Appl. Polym. Sci. 86, 2285–2289 (2002)

    Article  Google Scholar 

  9. Li, Y., Sonja, K.: Elecrtomechanical responses of strong acid polymer gels in DC electric fields. Macromolecules 36, 2055–2065 (2003)

    Article  Google Scholar 

  10. Thomas, W., Bernd, K., Jens, H., et al.: A coupled multi-field-formulation for ionic polymer gels in electric fields. Smart Struct. Mater. 4329, 264–275 (2001)

    Google Scholar 

  11. Birgersson, E., Li, H., Wu, S.: Transient analysis of temperature-sensitive neutral hydrogels. J. Mech. Phys. Solids 56, 444–466 (2008)

  12. Li, H., Yuan, Z., Lam, K.Y., et al.: Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 19, 1097–107 (2004)

    Article  Google Scholar 

  13. Li, H., Luo, R., Birgersson, E., et al.: Modeling of multiphase smart hydrogels responding to pH and electric voltage coupled stimuli. J. Appl. Phys. 101, 114905 (2007)

    Article  Google Scholar 

  14. Liu, Q., Li, H., Lam, K.Y.: Development of a multiphysics model to characterize the responsive behavior of magnetic-sensitive hydrogels with finite deformation. J. Phys. Chem. B 121, 5633–5646 (2017)

    Article  Google Scholar 

  15. Hong, W., Zhao, X., Zhou, J., et al.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793 (2008)

    Article  MATH  Google Scholar 

  16. Hong, W., Zhao, X.H., Suo, Z.G.: Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58, 558–577 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drozdov, A.D.: Swelling of pH-responsive cationic gels: Constitutive modeling and structure-property relations. Int. J. Solids Struct. 64–65, 176–190 (2015)

    Article  Google Scholar 

  18. Hong, W., Liu, Z.S., Suo, Z.G.: Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46, 3282–3289 (2009)

    Article  MATH  Google Scholar 

  19. Yang, Q.S., Ma, L.H., Shang, J.J.: The chemo-mechanical coupling behavior of hydrogels incorporating entanglements of polymer chains. Int. J. Solids Struct. 50, 2437–2448 (2013)

    Article  Google Scholar 

  20. Toh, W., Ng, T.Y., Liu, Z.S., et al.: Deformation kinetics of pH-sensitive hydrogels. Polym. Int. 63, 1578–1583 (2014)

    Article  Google Scholar 

  21. Duan, Z., An, Y., Zhang, J., et al.: The effect of large deformation and material nonlinearity on gel indentation. Acta. Mech. Sin. 28, 1058–1067 (2012)

    Article  MATH  Google Scholar 

  22. Liu, Z.S., Swaddiwudhipong, S., Hong, W.: Pattern formation in plants via instability theory of hydrogels. Soft Matter 9, 577–587 (2013)

    Article  Google Scholar 

  23. Zhang, T., Yuk, H., Lin, S., et al.: Tough and tunable adhesion of hydrogels: experiments and models. Acta. Mech. Sin. 33, 543–554 (2017)

    Article  Google Scholar 

  24. Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., et al.: Analytical solutions of polymeric gel structures under buckling and wrinkle. Int. J. Appl. Mech. 03, 235–257 (2011)

    Article  Google Scholar 

  25. Yang, Q.S., Tian, H., Qin, Q.H.: Analytical solutions for a one-dimensional chemo-mechanical coupling problem. Acta Mech. Solida Sin. 27, 137–145 (2014)

    Article  Google Scholar 

  26. Mazaheri, H., Baghani, M., Naghdabadi, R., et al.: Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling. Smart Mater. Struct. 25, 085034 (2016)

    Article  Google Scholar 

  27. Abdolahi, J., Baghani, M., Arbabi, N., et al.: Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers. Int. J. Solids Struct. 99, 1–11 (2016)

    Article  Google Scholar 

  28. Chen, X., Dai, H.-H.: Swelling and instability of a gel annulus. Acta. Mech. Sin. 31, 627–636 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Salvekar, A.V., Huang, W.M., Xiao, R., et al.: Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly(ethylene glycol) (PEG) hydrogel. Acc. Chem. Res. 50, 141–150 (2017)

    Article  Google Scholar 

  30. Yang, Q.S., Ma, L.H., Liu, B.S.: A continuum theory and numerical procedure for chemo-mechanical coupling behavior. Chin. J. Theor. Appl. Mech. 42, 422–431 (2010). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (Grants 11472020, 11502007, and 11632005) and Hong Kong Scholars Program (Grant XJ2016021) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Sheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XQ., Yang, QS. A general solution for one dimensional chemo-mechanical coupled hydrogel rod. Acta Mech. Sin. 34, 392–399 (2018). https://doi.org/10.1007/s10409-017-0728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0728-x

Keywords

Navigation