Skip to main content
Log in

Crack deflection occurs by constrained microcracking in nacre

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent, \(\hbox {CaCO}_{3}\), in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope (SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ritchie, R.O.: The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011)

    Article  Google Scholar 

  2. Wegst, U.G.K., Ashby, M.F.: The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2186 (2004)

    Article  Google Scholar 

  3. Launey, M.E., Ritchie, R.O.: On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009)

    Article  Google Scholar 

  4. Song, J.R., Fan, C.C., Ma, H.S., et al.: Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell. Acta. Mech. Sin. 31, 364–372 (2015)

    Article  Google Scholar 

  5. Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000)

    Article  Google Scholar 

  6. Gao, H., Ji, B., Jäger, I.L., et al.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Nat. Acad. Sci. 100, 5597–5600 (2003)

    Article  Google Scholar 

  7. Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005)

    Article  Google Scholar 

  8. Mayer, G.: New toughening concepts for ceramic composites from rigid natural materials. J. Mech. Behav. Biomed. Mater. 4, 670–681 (2011)

    Article  Google Scholar 

  9. Currey, J.D., Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)

    Article  Google Scholar 

  10. Jackson, A.P., Vincent, J.F.V., Turne, R.M.: Comparison of nacre with other ceramic composites. J. Mater. Sci. 25, 3173–317 (1990)

    Article  Google Scholar 

  11. Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415–440 (1988)

    Article  Google Scholar 

  12. Wang, R.Z., Suo, Z., Evans, A.G., et al.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)

    Article  Google Scholar 

  13. Evans, A.G., Suo, Z., Wang, R.Z., et al.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2476 (2001)

    Article  Google Scholar 

  14. Zuo, S.C., Wei, Y.G.: Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta. Mech. Sin. 24, 83–89 (2008)

    Article  Google Scholar 

  15. Barthelat, F., Tang, H., Zavattieri, P.D., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007)

    Article  Google Scholar 

  16. Wang, R., Gupta, H.S.: Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011)

    Article  Google Scholar 

  17. Wang, R.Z., Wen, H.B., Cui, F.Z., et al.: Observations of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299–2304 (1995)

    Article  Google Scholar 

  18. Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)

    Article  Google Scholar 

  19. Sarikaya, M., Gunnison, K.E., Yasrebi, M., et al.: Mechanical property-microstructural relationships in abalone shell. Mater. Res. Soc. 174, 109–116 (1990)

    Article  Google Scholar 

  20. Yao, H.M., Song, Z.G., Xu, Z.P., et al.: Cracks fail to intensify stress in nacreous composites. Compos. Sci. Technol. 81, 24–29 (2013)

    Article  Google Scholar 

  21. Xie, Z.Q., Yao, H.M.: Crack deflection and flaw tolerance in “brick-and-mortar” structured composites. Int. J. Appl. Mech. 6, 1450017 (2014)

    Article  Google Scholar 

  22. Feng, Q.L., Cui, F.Z., Pu, G., et al.: Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng. C 11, 19–25 (2000)

    Article  Google Scholar 

  23. Song, F., Zhang, X.H., Bai, Y.L.: Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res. 17, 1567–1570 (2002)

    Article  Google Scholar 

  24. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., et al.: Biological materials: structure and mechanical properties. Prog. Mater Sci. 53, 1–206 (2008)

    Article  Google Scholar 

  25. Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)

    Article  Google Scholar 

  26. Bevelander, G., Nakahara, H.: An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif. Tissue Res. 3, 84–92 (1969)

    Article  Google Scholar 

  27. Weiner, S., Traub, W., Parker, S.B.: Macromolecules in mollusc shells and their functions in biomineralization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304, 425–434 (1984)

    Article  Google Scholar 

  28. Schäffer, T.E., Ionescu-Zanetti, C., Proksch, R., et al.: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731–1740 (1997)

    Article  Google Scholar 

  29. Levi-Kalisman, Y., Falini, G., Addadi, L., et al.: Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 135, 8–17 (2001)

    Article  Google Scholar 

  30. Pokroy, B., Quintana, J.P., El’ad, N.C., et al.: Anisotropic lattice distortions in biogenic aragonite. Nat. Mater. 3, 900–902 (2004)

    Article  Google Scholar 

  31. Rousseau, M., Lopez, E., Stempflé, P., et al.: Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262 (2005)

    Article  Google Scholar 

  32. Oaki, Y., Imai, H.: The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 44, 6571–6575 (2005)

    Article  Google Scholar 

  33. Xie, L., Wang, X.X., Li, J.: The SEM and TEM study on the laminated structure of individual aragonitic nacre tablet in freshwater bivalve H. cumingii Lea shell. J. Struct. Biol. 169, 89–94 (2010)

    Article  Google Scholar 

  34. Younis, S., Kauffmann, Y., Bloch, L., et al.: Inhomogeneity of nacre lamellae on the nanometer length scale. Cryst. Growth Des. 12, 4574–4579 (2012)

    Article  Google Scholar 

  35. Takahashi, K., Yamamoto, H., Onoda, A., et al.: Highly oriented aragonite nanocrystal-biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata. Chem. Commun. 8, 996–997 (2004)

    Article  Google Scholar 

  36. Li, X., Huang, Z.: Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre. Phys. Rev. Lett. 102, 075502 (2009)

    Article  Google Scholar 

  37. Li, X., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–617 (2004)

    Article  Google Scholar 

  38. Huang, Z., Li, X.: Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1693 (2013)

    Article  Google Scholar 

  39. Vashishth, D., Tanner, K.E., Bonfield, W.: Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33, 1169–1174 (2000)

    Article  Google Scholar 

  40. Nalla, R.K., Kinney, J.H., Ritchie, R.O.: Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2, 164–168 (2003)

    Article  Google Scholar 

  41. Launey, M.E., Buehler, M.J., Ritchie, R.O.: On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010)

    Article  Google Scholar 

  42. Huang, Z., Li, H., Pan, Z., et al.: Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1, 148 (2011)

    Article  Google Scholar 

  43. Huang, Z., Pan, Z., Li, H., et al.: Hidden energy dissipation mechanism in nacre. J. Mater. Res. 29, 1573–1578 (2014)

    Article  Google Scholar 

  44. Lin, A.Y.M., Meyers, M.A.: Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2, 607–612 (2009)

    Article  Google Scholar 

  45. Bezares, J., Asaro, R.J., Hawley, M.: Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for mechanical response. J. Struct. Biol. 170, 484–500 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 91216108, 11432014, 11672301, 11372318, and 11502273) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueguang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Fan, C., Ma, H. et al. Crack deflection occurs by constrained microcracking in nacre. Acta Mech. Sin. 34, 143–150 (2018). https://doi.org/10.1007/s10409-017-0724-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0724-1

Keywords

Navigation