Skip to main content
Log in

Adaptive ANCF method and its application in planar flexible cables

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In the conventional absolute nodal coordinate formulation (ANCF), the model is pre-meshed, the number, distribution and type of elements are unchangeable during the simulation. In addition, the deformations of a flexible body are space-varying and time-varying, one cannot predict when, where, and how the deformations will occur. Therefore, in order to obtain a satisfactory accuracy during the whole simulation, the model is usually densely meshed, but it will result in a loss of computational efficiency. In this study, an adaptive absolute nodal coordinate formulation (AANCF) is proposed to optimize the accuracy and efficiency of flexible dynamics. The movement features of flexible bodies are analyzed, and the conventional and adaptive ANCF methods are compared. Then the adaptive computation strategy is presented. The discretization errors come from the inability of interpolation functions of individual elements to capture the complexity of the exact solution, so the mesh can be adaptively optimized by changing the element sizes or the orders of interpolation functions during dynamic computation. Important issues of AANCF, including error estimation, mesh updating, and performance of the AANCF model, are analyzed and discussed in detail. A theoretical model of a planar AANCF cable is presented, where the strategies of dividing and merging elements are discussed. Moreover, the continuity of dynamic variables is deduced, and the mean factors that affect the continuity are obtained, which is very important for the subsequent continuity optimization. The simulation results indicate that the distribution of elements varies with time and space, and the elements are denser in large-deformed domains. The AANCF model improved the computational accuracy and efficiency, but the system energy is discontinuous when the elements are merged. Therefore, a continuity-optimized AANCF model is given based on the previous continuity analysis, the results show that the accuracy and continuity of energy are further improved by the continuity-optimized AANCF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003)

    Article  Google Scholar 

  2. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  3. Shabana, A.A.: An Absolute Nodal Coordinate Formulation for the Large Rotation and Large Deformation Analysis of Flexible Bodies. Technical Report No. MBS96-1-UIC (1996)

  4. Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10, 054506 (2015)

    Article  Google Scholar 

  5. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  6. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2000)

    Article  Google Scholar 

  7. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  8. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  9. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 221, 219–231 (2007)

    Google Scholar 

  10. Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  11. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219, 345–355 (2005)

    Google Scholar 

  12. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abbas, L., Rui, X., Hammoudi, Z.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 224, 127–141 (2010)

    Google Scholar 

  14. Olshevskiy, A., Dmitrochenko, O., Dai, M.D., et al.: The simplest 3-, 6-and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34, 23–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olshevskiy, A., Dmitrochenko, O., Kim, C.-W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9, 021001 (2014)

    Article  Google Scholar 

  16. Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006)

    Article  MATH  Google Scholar 

  17. Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J. Sound Vib. 319, 1019–1035 (2009)

    Article  Google Scholar 

  18. Čepon, G., Manin, L., Boltežar, M.: Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J. Sound Vib. 324, 283–296 (2009)

    Article  Google Scholar 

  19. Lugris, U., Escalona, J., Dopico, D., et al.: Efficient and accurate simulation of the Cable–Pulley interaction in weight-lifting machines. In: 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, May 25–27 (2010)

  20. Lee, J.-H., Park, T.-W.: Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation. J. Mech. Sci. Technol. 26, 3933–3941 (2012)

    Article  Google Scholar 

  21. Tur, M., García, E., Baeza, L., et al.: A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Eng. Struct. 71, 234–243 (2014)

    Article  Google Scholar 

  22. Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10, 024504 (2015)

    Article  Google Scholar 

  23. Yu, Z., Liu, Y., Tinsley, B., et al.: Integration of geometry and analysis for vehicle system applications: continuum-based leaf spring and tire assembly. J. Comput. Nonlinear Dyn. 11, 031011 (2015)

    Article  Google Scholar 

  24. Wei, C., Wang, L., Shabana, A.A.: A total lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)

    Article  Google Scholar 

  25. Dow, J.O.: The Essentials of Finite Element Modeling and Adaptive Refinement. Momentum Press, New York (2012)

    Google Scholar 

  26. Babuska, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. In: DTIC Document (1981)

  27. Basu, P.K., Peano, A.: Adaptivity in p-version finite element analysis. J. Struct. Eng. 109, 2310–2324 (1983)

    Article  Google Scholar 

  28. Babusška, I.: Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Wiley, New York (1986)

    Google Scholar 

  29. Li, L.-Y., Bettess, P.: Adaptive finite element methods: a review. Appl. Mech. Rev. 50, 581–591 (1997)

    Article  Google Scholar 

  30. Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  31. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MATH  Google Scholar 

  32. Zienkiewicz, O., Zhu, J.Z.: Error estimates and adaptive refinement for plate bending problems. Int. J. Numer. Methods Eng. 28, 2839–2853 (1989)

  33. Zhu, J., Zienkiewicz, O.: Superconvergence recovery technique and a posteriori error estimators. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ainsworth, M., Zhu, J., Craig, A., et al.: Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method. Int. J. Numer. Methods Eng. 28, 2161–2174 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Choudhary, S., Grosse, I.: Effective stress-based finite element error estimation for composite bodies. Comput. Struct. 48, 493–503 (1993)

    Article  MATH  Google Scholar 

  36. Demkowicz, L., Devloo, P., Oden, J.T.: On an h-type mesh-refinement strategy based on minimization of interpolation errors. Comput. Methods Appl. Mech. Eng. 53, 67–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Szabo, B.A.: Implementation of a finite element software system with H and P extension capabilities. Finite Elem. Anal. Des. 2, 177–194 (1986)

    Article  Google Scholar 

  38. Paulino, G.H., Shi, F., Mukherjee, S., et al.: Nodal sensitivities as error estimates in computational mechanics. Acta Mech. 121, 191–213 (1997)

    Article  MATH  Google Scholar 

  39. Shephard, M.S., Yerry, M.A.: Finite element mesh generation for use with solid modeling and adaptive analysis. In: Solid Modeling by Computers: From Theory to Applications, 53–80. Springer, Boston (1984)

  40. Mitchell, W.F., McClain, M.A.: A survey of hp-adaptive strategies for elliptic partial differential equations. In: Recent Advances in Computational and Applied Mathematics, 227–258. Springer, Dordrecht (2011)

  41. Oh, H.C., Lee, B.C.: hp-adaptive finite element method for linear elasticity using higher-order virtual node method. J. Mech. Sci. Technol. 29, 4299–4312 (2015)

    Article  Google Scholar 

  42. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. J. Sci. Comput. 17, 117–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kelly, D.W.: The Self-Equilibration of Residuals and Complementary a Posteriori Error Estimates in the Finite Element Method. Wiley, Chichester (1984)

    MATH  Google Scholar 

  44. Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Negrut, D., Rampalli, R., Ottarsson, G., et al.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2, 73–85 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Basic Research Program of China (Grant 2013CB733004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, C., Zhao, Y. et al. Adaptive ANCF method and its application in planar flexible cables. Acta Mech. Sin. 34, 199–213 (2018). https://doi.org/10.1007/s10409-017-0721-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0721-4

Keywords

Navigation