Skip to main content
Log in

A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We proposed a mesh-free method, the called node-based smoothed point interpolation method (NS-PIM), for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection. This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations, but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange’s equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method (FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yoo, H.H., Ryan, R.R., Scott, R.A.: Dynamics of flexible beams undergoing overall motions. J. Sound Vib. 181, 261–278 (1995)

    Article  MATH  Google Scholar 

  2. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)

    Article  Google Scholar 

  3. Li, L., Zhang, D.G., Zhu, W.D.: Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333, 1526–1541 (2014)

    Article  Google Scholar 

  4. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–164 (2002)

    Article  Google Scholar 

  5. Du, H., Lira, M.K., Liew, K.M.: A nonlinear finite element model for dynamics of flexible manipulators. Mech. Mach. Theory 31, 1109–1119 (1996)

    Article  Google Scholar 

  6. Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58, 565–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, G.R., Quek, S.S.: Finite Element Method: A Practical Course, 2nd edn. Butterworth-Heinemann, Burlington (2013)

    MATH  Google Scholar 

  8. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Dordrecht (2005)

    Google Scholar 

  9. Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22, 181–197 (2009)

    Article  MATH  Google Scholar 

  10. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298, 1129–1149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y.N., Sun, L., Liu, Y.H., et al.: Multi-scale B-spline method for 2-D elastic problems. Appl. Math. Model. 35, 3685–3697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lucy, L.B.: A numerical approach to testing of the fission hypothesis. Astron. J. 8, 1013–1024 (1977)

    Article  Google Scholar 

  14. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Practical Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  15. Monaghan, J.J.: An introduction to SPH. Comput. Phys. Commun. 48, 89–96 (1998)

    Article  MATH  Google Scholar 

  16. Belytschko, Y., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W.K., Jun, S., Zhang, Y.E.: Reproducing kernel particle methods. Int. J. Numer. Methods Eng. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atluri, S.N., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

  19. Liu, G.R., Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50, 937–951 (2001)

  20. Liu, G.R., Dai, K.Y., Lim, K.M., et al.: A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Comput. Mech. 29, 510–519 (2002)

    Article  MATH  Google Scholar 

  21. Liu, G.R., Zhang, G.Y., Gu, Y.T., et al.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. 36, 421–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)

    Article  MATH  Google Scholar 

  23. Liu, G.R., Zhang, G.Y., Dai, K.Y., et al.: A linearly conforming point interpolation method (LC-PIM) for 2-D solid mechanics problems. Int. J. Comput. Methods 2, 645–665 (2005)

    Article  MATH  Google Scholar 

  24. Liu, G.R., Zhang, G.Y.: Upper bound solutions to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int. J. Numer. Methods Eng. 74, 1128–1161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, G.Y., Liu, G.R., Wang, Y.Y., et al.: A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int. J. Numer. Methods Eng. 72, 1524–1543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, S.C., Liu, G.R., Zhang, H.O., et al.: A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds. Int. J. Heat Mass Transf. 52, 1464–1471 (2009)

    Article  MATH  Google Scholar 

  27. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  28. Cui, X.Y., Liu, G.R., Li, G.Y., et al.: A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique. CMES 28, 217–229 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC Press, Boca Raton (2003)

    Book  MATH  Google Scholar 

  30. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  31. Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical system. Int. J. Numer. Methods Eng. 26, 2211–2226 (1988)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the National Natural Science Foundation of China (Grants 11272155, 11132007, and 11502113), the Fundamental Research Funds for Central Universities (Grant 30917011103), and the China Scholarship Council for one year study at the University of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C.F., Zhang, D.G., Li, L. et al. A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams. Acta Mech. Sin. 34, 409–420 (2018). https://doi.org/10.1007/s10409-017-0713-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0713-4

Keywords

Navigation