Skip to main content
Log in

Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Koiter, W.T.: Couple-stresses in the theory of elasticity: I and II. Ned. Akad. Wet. Proc. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Aggarwal, H.R., Alverson, R.C.: The effect of couple-stresses on the diffraction of plane elastic waves by cylindrical discontinuities. Int. J. Solids Struct. 5, 491–511 (1969)

    Article  MATH  Google Scholar 

  4. Ottosen, N.S., Ristinmaa, M., Ljung, C.: Rayleigh waves obtained by the indeterminate couple-stress theory. Eur. J. Mech. A Solid 19, 929–947 (2000)

    Article  MATH  Google Scholar 

  5. Yang, F., Chong, A.C.M., Lam, D.C.C., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  6. Georgiadis, H.G., Velgaki, E.G.: High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects. Int. J. Solids Struct. 40, 2501–2520 (2003)

    Article  MATH  Google Scholar 

  7. Shodja, H.M., Ghazisaeidi, M.: Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities. Eur. J. Mech. A Solid 26, 647–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bekir, A., Omer, C.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mishuris, G., Piccolroaz, A., Radi, E.: Steady-state propagation of a mode III crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kumar, R., Kumar, K., Nautiyal, R.: Propagation of SH-waves in couple stress elastic half space underlying an elastic layer. Afr. Mat. 24, 477–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gourgiotis, P.A., Piccolroaz, A.: Steady-state propagation of a Mode II crack in couple stress elasticity. Int. J. Fract. 188, 119–145 (2014)

    Article  Google Scholar 

  12. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graff, K.F., Pao, Y.H.: The effects of couple-stresses on the propagation and reflection of the plane waves in an elastic half-space. J. Sound Vib. 6, 217–229 (1967)

    Article  Google Scholar 

  14. Hsia, S.Y., Su, C.C.: Propagation of longitudinal waves in microporous slab sandwiched between elastic half-spaces. Jpn. J. Appl. Phys. 47, 5581–5590 (2008)

    Article  Google Scholar 

  15. Li, Y.Q., Wei, P.J.: Reflection and transmission through a microstructured slab sandwiched by two half-spaces. Eur. J. Mech. A Solid 57, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, P., Wei, P.J., Li, Y.Q.: Wave propagation through a micropolar slab sandwiched by two elastic half-spaces. J. Vib. Acoust. 138, 1–17 (2016)

    Google Scholar 

  17. Zhang, P., Wei, P.J., Li, Y.Q.: In-plane wave propagation through a microstretch slab sandwiched by two half-spaces. Eur. J. Mech. A Solid 63, 136–148 (2017)

    Article  MathSciNet  Google Scholar 

  18. Jiao, F.Y., Wei, P.J., Li, L.: Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces. Ultrasonics 73, 22–33 (2017)

  19. Guo, X., Wei, P.J., Li, L.: Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with mechanically and dielectrically imperfect interfaces. Mech. Mater. 93, 168–183 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (Grant FRF-BR-15-026A) and the National Natural Science Foundation of China (Grant 10972029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Chen.

Appendices

Appendix A

In the case of the couple-stress elastic slab sandwiched between the couple-stress elastic half-spaces, the non-zero elements of matrix \(\varvec{P}=\left[ {a_{i,j} } \right] _{1{2}\times 1{2}} \) are listed as follows

$$\begin{aligned}&a_{1,1} =\mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) ,\quad a_{1,2} =2\mu _1 \zeta _1 \beta _1 ,\\&a_{1,3} = 2\text {i}\mu _1 \gamma _1 \zeta _1 ,\quad a_{1,{4}} =-\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\\&a_{1,{5}} = 2\mu _2 \zeta _2 \beta _2 , \quad a_{1,{6}} =2\text {i}\mu _2 \gamma _2 \zeta _2 ,\\&a_{1,{7}} =-\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{1,{8}} =-2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d}\right) ;\\&a_{2,1} =-2\mu _1 \xi _1 \alpha _1 ,\quad a_{{2,}2} =\mu _1 \left( {2\zeta _{1}^{2} -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) ,\\&a_{{2,3}} =\mu _1 \left( {2\zeta _{1}^{2} -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) , \quad a_{2,{4}} =-2\mu _2 \xi _2 \alpha _2 , \\&a_{2,{5}} =-\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\\&a_{2,{6}} =-\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \\&a_{2,{7}} = 2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\ \end{aligned}$$
$$\begin{aligned}&a_{2,{8}} =-\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{3,2} = 2\text {i}\eta _1 \beta _1 \beta _{1\left( 1 \right) }^2 , a_{3,3}=2\eta _1 \gamma _1 \beta _{2\left( 1 \right) }^2 ,\, a_{3,5} =2\text {i}\eta _2 \beta _2 \beta _{{1}\left( {2} \right) }^{2},\\&a_{3,6} =2\eta _2 \gamma _2 \beta _{2\left( 2 \right) }^2 ,\quad a_{3,8} =-2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{4,1} = \text {i}\alpha _1 ,\quad a_{4,2} =-\text {i}\zeta _1 , a_{4,3} =-\text {i}\zeta _1 , \quad a_{4,{4}} =\text {i}\alpha _2 ,\\&a_{4,{5}} =\text {i}\zeta _2 , \quad a_{4,{6}} =\text {i}\zeta _2,\quad a_{4,{7}} =-\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{4,{8}} = \text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ; \quad a_{5,1} =\text {i}\xi _1 , \quad a_{5,2} =\text {i}\beta _1 ,\\&a_{5,3} =-\gamma _1 , \quad a_{5,{4}} =-\text {i}\xi _2 , \quad a_{5,{5}} =\text {i}\beta _2 ,\quad a_{5,{6}} =-\gamma _2 , \\&a_{5,{7}} =-\text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) , \quad a_{{5,8}} =-\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{6,2} = \beta _{1\left( 1 \right) }^2 ,\quad a_{6,3} =-\beta _{2\left( 1 \right) }^2 ,\quad a_{6,5} =-\beta _{1\left( 2 \right) }^2 ,\\&a_{6,6} = \beta _{2\left( 2 \right) }^2 ,\quad a_{6,8} = -\beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{{7,4}} =\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{{7,5}} =-2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\&a_{{7,7}} =\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \\ \end{aligned}$$
$$\begin{aligned}&a_{{7,8}} =2\mu _2 \zeta _2 \beta _2 , a_{{7,9}} =2\text {i}\mu _2 \gamma _2 \zeta _2 ,\\&a_{{7,10}} =-\mu _3 \left( {2\xi _3^2 -{\omega ^{2}}/{c_{2\left( 3 \right) }^2 }} \right) , \quad a_{{7,}1{1}} =2\mu _3 \zeta _3 \beta _3 ,\\&a_{7,12} = 2\text {i}\mu _3 \gamma _3 \zeta _3 ;\quad a_{{8,4}} =2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) , \\&a_{{8,5}} =\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\beta _2 d} \right) ,\\&a_{{8,7}} =-2\mu _2 \xi _2 \alpha _2 ,\quad a_{{8,8}} =\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\\&a_{{8,9}} =\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\quad a_{{8,10}} =-2\mu _3 \xi _3 \alpha _3 ,\\&a_{8,11} =-\mu _3 \left( {2\zeta _{3}^{2} -{\omega ^{2}}/{c_{{2}\left( {3} \right) }^{2} }} \right) ,\\&a_{8,1{2}} = -\mu _3 \left( {2\zeta _{3}^{2} -{\omega ^{2}}/{c_{{2}\left( {3} \right) }^{2} }} \right) ;\\&a_{{9,5}} = -2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) , \\&a_{{9,8}} =2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 ,\quad a_{{9,9}} =2\eta _2 \gamma _2 \beta _{2\left( 2 \right) }^2 ,\\&a_{9,11} =2\text {i}\eta _3 \beta _3 \beta _{{1}\left( {3} \right) }^{2} ,\quad a_{9,12} = 2\eta _3 \gamma _3 \beta _{2\left( 3 \right) }^2 ;\\ \end{aligned}$$
$$\begin{aligned}&a_{10,4} =-\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\quad a_{10,5}=-\text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\&a_{10,7} =\text {i}\alpha _2 ,\quad a_{10,8} =-\text {i}\zeta _2 , \quad a_{10,9} =-\text {i}\zeta _2 , \\&a_{10,10} = \text {i}\alpha _{3} ,\quad a_{10,11} =\text {i}\zeta _3 , \quad a_{10,12} =\text {i}\zeta _3 ;\\&a_{{11,4}} =\text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\, a_{{11,5}} =-\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\&a_{11,7} =\text {i}\xi _2 , \quad a_{11,8} =\text {i}\beta _2 , \quad a_{11,9} =-\gamma _2 ,\\&a_{11,10} =-\text {i}\xi _3 , \quad a_{11,11} =\text {i}\beta _3 , \quad a_{11,12} =-\gamma _3 ;\quad \\&a_{12,5} =\beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) , \\&a_{12,8} =\beta _{1\left( 2 \right) }^2 ,\quad a_{12,9} =-\beta _{2\left( 2 \right) }^2 , \\&a_{12,11} =-\beta _{1\left( 3 \right) }^2 , \quad a_{12,12} =\beta _{2\left( 3 \right) }^2 . \end{aligned}$$

In the case of incident P wave, the non-zero elements of matrix \(\varvec{Q}=\left[ {q_i } \right] _{12\times {1}} \) are

$$\begin{aligned} q_1= & {} -\mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) , \quad q_2 =-2\mu _1 \xi _1 \alpha _1, \quad q_4 =\text {i}\alpha _1, \\ q_5= & {} -\text {i}\xi _1. \end{aligned}$$

In the case of incident SV wave, the non-zero elements of matrix \({\varvec{Q}}'=\left[ {{q}'_i } \right] _{12\times {1}} \) are

$$\begin{aligned}&{q}'_1 =2\mu _1 \zeta _1 \beta _1, \quad {q}'_2 =-\mu _1 \left( {2\zeta _{1}^{2} -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) ,\\&{q}'_3 =2\text {i}\eta _1 \beta _1 \beta _{1\left( 1 \right) }^2,\, {q}'_4 =\text {i}\zeta _1, \quad {q}'_5 =\text {i}\beta _1, \quad {q}'_6 =-\beta _{1\left( 1 \right) }^2. \end{aligned}$$

Appendix B

In the case of the couple-stress elastic slab sandwiched by the classical elastic half-spaces, there are two kinds of interface conditions. For the couple-free interface, the non-zero elements of matrix \(\varvec{P}=\left[ {a_{i,j} } \right] _{1{0}\times 1{0}} \) are

$$\begin{aligned}&a_{1,1} = \mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) , \quad a_{1,2} =2\mu _1 \zeta _1 \beta _1 ,\\&a_{1,{3}} = -\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\quad a_{1,{4}} =2\mu _2 \zeta _2 \beta _2 ,\\&a_{1,{5}} = 2\text {i}\mu _2 \gamma _2 \zeta _2 , \quad a_{1,{6}} =-\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{1,{7}} = -2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{2,1} =-2\mu _1 \xi _1 \alpha _1 , \\&a_{2,2} =\mu _1 \left( {-\beta _1^2 +\zeta _1^2 } \right) ,\quad a_{2,3} = -2\mu _2 \xi _2 \alpha _2 , \\&a_{2,4} =-\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\\&a_{2,5} = -\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \\ \end{aligned}$$
$$\begin{aligned}&a_{2,6} =2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{2,7} = -\mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\beta _2 d} \right) ; \\&a_{3,4} =2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 ,\quad a_{3,5} = 2\eta _2 \gamma _2 \beta _{2\left( 2 \right) }^2 ,\\&a_{3,7} = -2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) ;\, a_{4,1} = \text {i}\alpha _1 , \quad a_{4,2} =-\text {i}\zeta _1 ,\\&a_{4,3} = \text {i}\alpha _2 , \quad a_{4,4} =\text {i}\zeta _2 ,\quad a_{4,5} = \text {i}\zeta _2 , \\&a_{4,6} =-\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\quad a_{4,7} = \text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{5,1} =\text {i}\xi _1 , \quad a_{5,2} =\text {i}\beta _1 ,\quad a_{5,3} = -\text {i}\xi _2 , \quad \\&a_{5,4} =\text {i}\beta _2 , \quad a_{5,5} =-\gamma _2 ,\\&a_{5,6} = -\text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) , \quad a_{{5,}7} =-\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\&a_{6,3} = \mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{6,4} = -2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d} \right) , \\&a_{6,6} = \mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \\ \end{aligned}$$
$$\begin{aligned}&a_{6,7} =2\mu _2 \zeta _2 \beta _2 , \quad a_{6,8} =2\text {i}\mu _2 \gamma _2 \zeta _2 ,\\&a_{6,9} = -\mu _3 \left( {2\xi _3^2 -{\omega ^{2}}/{c_{2\left( 3 \right) }^2 }} \right) , \quad a_{6,10} =2\mu _3 \zeta _3 \beta _3 ;\\&a_{7,3} = 2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{7,4} = \mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\beta _2 d} \right) , \\&a_{7,6} =-2\mu _2 \xi _2 \alpha _2 ,\quad a_{7,7} = \mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) ,\\&a_{7,8} = \mu _2 \left( {2\zeta _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \quad a_{7,9} =-2\mu _3 \xi _3 \alpha _3 ,\\&a_{7,10} = -\mu _3 \left( {-\beta _3^2 +\zeta _3^2 } \right) ;\\&a_{8,4} = -2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) , \\ \end{aligned}$$
$$\begin{aligned}&a_{8,7} =2\text {i}\eta _2 \beta _2 \beta _{1\left( 2 \right) }^2 ,\quad a_{8,8} = 2\eta _2 \gamma _2 \beta _{2\left( 2 \right) }^2 ;\\&a_{9,3} = -\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) , \quad a_{9,4} =-\text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\&a_{9,6} = \text {i}\alpha _2 , \quad a_{9,7} =-\text {i}\zeta _2 , \quad a_{9,8} =-\text {i}\zeta _2 ,\\&a_{9,9} = \text {i}\alpha _{3} , \quad a_{9,10} =\text {i}\zeta _3 ; \quad \\&a_{10,3} =\text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\&a_{10,4} = -\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) , \quad a_{10,6} =\text {i}\xi _2 ,\quad a_{10,7} = \text {i}\beta _2 , \\&a_{10,8} =-\gamma _2 , \quad a_{10,9} =-\text {i}\xi _3 , \quad a_{10,10} =\text {i}\beta _3. \end{aligned}$$

In the case of incident P wave, the non-zero elements of matrix \(\varvec{Q}=\left[ {q_i } \right] _{1{0}\times {1}} \) are

$$\begin{aligned}&q_1 =-\mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) ,\quad q_2 =-2\mu _1 \xi _1 \alpha _1,\\&q_4 =\text {i}\alpha _1,\quad q_5 =-\text {i}\xi _1. \end{aligned}$$

In the case of incident SV wave, the non-zero elements of matrix \({\varvec{Q}}'=\left[ {{q}'_i } \right] _{1{0}\times {1}} \) are

$$\begin{aligned}&{q}'_1 =2\mu _1 \zeta _1 \beta _1, \quad {q}'_2 =-\mu _1 \left( {-\beta _1^2 +\zeta _1^2 } \right) , \\&{q}'_4 =\text {i}\zeta _1, \quad {q}'_5 =\text {i}\beta _1. \end{aligned}$$

For the rotation-free interface, compared with the couple-free interface, only following elements of matrix \(\varvec{P}=\left[ {a_{i,j} } \right] _{1{0}\times 1{0}} \) are replaced by

$$\begin{aligned} a_{3,4}= & {} -\beta _{1\left( 2 \right) }^2 , \quad a_{3,5} =\beta _{2\left( 2 \right) }^2 , \quad a_{3,7} =-\beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) ;\\ a_{8,4}= & {} \beta _{1\left( 2 \right) }^2 \exp \left( {\text {i}\beta _2 d} \right) , \quad a_{8,7} =\beta _{1\left( 2 \right) }^2 , \quad a_{8,8} =-\beta _{2\left( 2 \right) }^2 . \end{aligned}$$

Appendix C

In the case of the classical elastic slab sandwiched between the classical elastic half-spaces, the non-zero elements of matrix \(\varvec{P}=\left[ {a_{i,j} } \right] _{{8}\times {8}} \) are

$$\begin{aligned} a_{1,1}= & {} \mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) , \quad a_{1,2} =2\mu _1 \zeta _1 \beta _1 ,\\ a_{1,{3}}= & {} -\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \quad a_{1,{4}} =2\mu _2 \zeta _2 \beta _2 ,\\ a_{1,{5}}= & {} -\mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) , \\ a_{1,{6}}= & {} -2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\ a_{2,1}= & {} -2\mu _1 \xi _1 \alpha _1 ,\quad a_{2,2} =\mu _1 \left( {-\beta _1^2 +\zeta _1^2 } \right) , \quad \\ a_{2,3}= & {} -2\mu _2 \xi _2 \alpha _2 ,\quad a_{2,4} =-\mu _2 \left( {-\beta _2^2 +\zeta _2^2 } \right) ,\quad \\ a_{2,{5}}= & {} 2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\ a_{2,{6}}= & {} -\mu _2 \left( {-\beta _2^2 +\zeta _2^2 } \right) \exp \left( {\text {i}\beta _2 d} \right) ;\quad \\ \end{aligned}$$
$$\begin{aligned} a_{{3,}1}= & {} \text {i}\alpha _1 ,\quad a_{{3,}2} =-\text {i}\zeta _1 ,\quad a_{{3,}3} =\text {i}\alpha _2, \quad a_{{3,}4} =\text {i}\zeta _2 ,\\ a_{{3,5}}= & {} -\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\quad a_{{3,6}} =\text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ; \\ a_{{4,}1}= & {} \text {i}\xi _1 ,\quad a_{{4,}2} =\text {i}\beta _1 , \quad a_{{4,}3} =-\text {i}\xi _2 ,\\ a_{{4,}4}= & {} \text {i}\beta _2 ,\quad a_{{4,5}} =-\text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) , \\ a_{{4,6}}= & {} -\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) ;\\ a_{{5,}3}= & {} \mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) \exp \left( {\text {i}\alpha _2 d} \right) ,\\ a_{{5,}4}= & {} -2\mu _2 \zeta _2 \beta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\ a_{{5,5}}= & {} \mu _2 \left( {2\xi _2^2 -{\omega ^{2}}/{c_{2\left( 2 \right) }^2 }} \right) , \quad a_{{5,6}} =2\mu _2 \zeta _2 \beta _2 ,\\ a_{{5,7}}= & {} -\mu _3 \left( {2\xi _3^2 -{\omega ^{2}}/{c_{2\left( 3 \right) }^2 }} \right) , \quad a_{{5,8}} =2\mu _3 \zeta _3 \beta _3 ;\\ a_{{6,}3}= & {} 2\mu _2 \xi _2 \alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\ \end{aligned}$$
$$\begin{aligned} a_{{6,}4}= & {} \mu _2 \left( {-\beta _2^2 +\zeta _2^2 } \right) \exp \left( {\text {i}\beta _2 d} \right) ,\\ a_{{6,5}}= & {} -2\mu _2 \xi _2 \alpha _2 ,\quad a_{{6,6}} =\mu _2 \left( {-\beta _2^2 +\zeta _2^2 } \right) ,\\ a_{{6,7}}= & {} -2\mu _3 \xi _3 \alpha _3 ,\quad a_{{6,8}} =-\mu _3 \left( {-\beta _3^2 +\zeta _3^2 } \right) ;\\ a_{{7,}3}= & {} -\text {i}\alpha _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\quad a_{{7,4}} =-\text {i}\zeta _2 \exp \left( {\text {i}\beta _2 d} \right) ,\\ a_{{7,5}}= & {} \text {i}\alpha _2 ,\quad a_{{7,6}} =-\text {i}\zeta _2 ,\quad a_{{7,7}} =\text {i}\alpha _{3} ,\quad a_{{7,8}} =\text {i}\zeta _3 ;\quad \\ a_{{8,}3}= & {} \text {i}\xi _2 \exp \left( {\text {i}\alpha _2 d} \right) ,\\ a_{{8,}4}= & {} -\text {i}\beta _2 \exp \left( {\text {i}\beta _2 d} \right) , a_{{8,5}} =\text {i}\xi _2 ,\quad a_{{8,6}} =\text {i}\beta _2 ,\\ a_{{8,7}}= & {} -\text {i}\xi _3 ,\quad a_{{8,8}} =\text {i}\beta _3. \end{aligned}$$

In the case of incident P wave, the non-zero elements of matrix \(\varvec{Q}=\left[ {q_i } \right] _{8\times {1}} \) are

$$\begin{aligned} q_1= & {} -\mu _1 \left( {2\xi _1^2 -{\omega ^{2}}/{c_{2\left( 1 \right) }^2 }} \right) , \quad q_2 =-2\mu _1 \xi _1 \alpha _1, \\ q_3= & {} \text {i}\alpha _1, \quad q_{4} =-\text {i}\xi _1. \end{aligned}$$

In the case of incident SV wave, the non-zero elements of matrix \({\varvec{Q}}'=\left[ {{q}'_i } \right] _{8\times {1}} \) are

$$\begin{aligned} {q}'_1= & {} 2\mu _1 \zeta _1 \beta _1, \quad {q}'_2 =-\mu _1 \left( {-\beta _1^2 +\zeta _1^2 } \right) ,\\ {q}'_3= & {} \text {i}\zeta _1, \quad {q}'_{4} =\text {i}\beta _1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, X., Wei, P. et al. Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces. Acta Mech. Sin. 33, 1022–1039 (2017). https://doi.org/10.1007/s10409-017-0712-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0712-5

Keywords

Navigation