Skip to main content
Log in

Micromechanics of substrate-supported thin films

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems (MEMS/NEMS) and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques, such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Ref. [5], copyright\(^{\copyright }\) Nature Publishing Group

Fig. 2

Reproduced from Ref. [29], copyright\(^{\copyright }\) Elsevier

Fig. 3
Fig. 4
Fig. 5

Reproduced from Ref. [49]

Fig. 6

Reproduced from Ref. [66], copyright\(^{\copyright }\) Elsevier

Fig. 7

Reproduced from Ref. [78], copyright\(^{\copyright }\) Elsevier

Fig. 8

Similar content being viewed by others

References

  1. Crawford, G.: Flexible at Panel Displays. Wiley, Somerset (2005)

    Book  Google Scholar 

  2. Kim, D.-H., Xiao, J., Song, J., et al.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010)

    Article  Google Scholar 

  3. Ko, H.C., Stoykovich, M.P., Song, J., et al.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  Google Scholar 

  4. Brand, J., Kok, M., Koetse, M., et al.: Flexible and stretchable electronics for wearable health devices. Solid-State Electron. 113, 116–120 (2015)

    Article  Google Scholar 

  5. Forrest, S.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  Google Scholar 

  6. Fewster, P.: X-ray analysis of thin films and multilayers. Rep. Prog. Phys. 59, 1339 (1996)

    Article  Google Scholar 

  7. Cotton, D., Graz, I., Lacour, S.: Stretchable touch sensitive keypad. Proc. Chem. 1, 152–155 (2009)

    Article  Google Scholar 

  8. Rogers, J., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  9. Kim, D.-H., Ahn, J.-H., Choi, W.M., et al.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  10. Freund, L., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Hohlfeld, E., Davidovitch, B.: Sheet on a deformable sphere: wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91, 012407 (2015)

    Article  Google Scholar 

  12. Bella, P., Kohn, R.V.: Wrinkling of a thin circular sheet bonded to a spherical substrate. Philos. Trans. R. Soc. A 375, 2093 (2017)

    Article  Google Scholar 

  13. Hure, J., Roman, B., Bico, J.: Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012)

    Article  Google Scholar 

  14. Kim, D.-H., Song, J., Choi, W., et al.: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Nat. Acad. Sci. 105, 18675–18680 (2008)

    Article  Google Scholar 

  15. Song, J., Feng, X., Huang, Y.: Mechanics and thermal management of stretchable inorganic electronics. Natl. Sci. Rev. 3, 128–143 (2016)

    Article  Google Scholar 

  16. Toth, F., Rammerstorfer, F., Cordill, M., et al.: Detailed modelling of delamination buckling of thin films under global tension. Acta Mater. 61, 2425–2433 (2013)

    Article  Google Scholar 

  17. Li, B., Cao, Y., Feng, X., et al.: Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8, 5728–5745 (2012)

    Article  Google Scholar 

  18. Xue, X., Wang, S., Zeng, C., et al.: Buckling-delamination and cracking of thin titanium films under compression: experimental and numerical studies. Surf. Coat. Technol. 244, 151–157 (2014)

    Article  Google Scholar 

  19. Huang, H.S., Pei, H.J., Chang, Y.C., et al.: Tensile behaviors of amorphous-zrcu/nanocrystalline-cu multilayered thin film on polyimide substrate. Thin Solid Films 529, 177–180 (2013)

    Article  Google Scholar 

  20. Djaziri, S., Renault, P.-O., Le Bourhis, E., et al.: Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates. J. Appl. Phys. 116, 093504 (2014)

    Article  Google Scholar 

  21. Hommel, M., Kraft, O.: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935–3947 (2001)

    Article  Google Scholar 

  22. Xiang, Y., Vlassak, J.: Bauschinger effect in thin metal films. Scr. Mater. 53, 177–182 (2005)

    Article  Google Scholar 

  23. Xiang, Y., Li, T., Suo, Z., et al.: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005)

    Article  Google Scholar 

  24. Lu, N., Wang, X., Suo, Z., et al.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007)

    Article  Google Scholar 

  25. Niu, R.M., Liu, G., Wang, C., et al.: Thickness dependent critical strain in submicron cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007)

    Article  Google Scholar 

  26. Marx, V., Cordill, M., Tbbens, D., et al.: Effect of annealing on the size dependent deformation behavior of thin cobalt films on flexible substrates. Thin Solid Films 624, 34–40 (2017)

    Article  Google Scholar 

  27. Graudejus, O., Jia, Z., Li, T., et al.: Size-dependent rupture strain of elastically stretchable metal conductors. Scr. Mater. 66, 919 (2012)

    Article  Google Scholar 

  28. Suo, Z., Vlassak, J.J., Wagner, S.: Micromechanics of macroelectronics. China Particuol. 3, 321–328 (2005)

    Article  Google Scholar 

  29. Jia, H., Wang, S., Li, L., et al.: Application of optical 3d measurement on thin film buckling to estimate interfacial toughness. Opt. Lasers Eng. 54, 263–268 (2014)

    Article  Google Scholar 

  30. Mittal, K.: Adhesion measurement of thin films. Act. Passive Electron. Compon. 3, 21–42 (1976)

    Google Scholar 

  31. Gerberich, W., Cordill, M.: Physics of adhesion. Rep. Prog. Phys. 69, 2157 (2006)

    Article  Google Scholar 

  32. Chen, J., Bull, S.: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D Appl. Phys. 40, 5401 (2007)

    Article  Google Scholar 

  33. Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991)

    Article  MATH  Google Scholar 

  34. Cordill, M., Fischer, F., Rammerstorfer, F., et al.: Adhesion energies of cr thin films on polyimide determined from buckling: experiment and model. Acta Mater. 58, 5520–5531 (2010)

  35. Faurie, D., Zighem, F., Garcia-Sanchez, A., et al.: Fragmentation and adhesion properties of cofeb thin films on polyimide substrate. Appl. Phys. Lett. 110, 721 (2017)

    Article  Google Scholar 

  36. Wu, K., Zhang, J.Y., Liu, G., et al.: Buckling behaviors and adhesion energy of nanostructured Cu/\(x\) (\(x\) = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 7889 (2013)

    Article  Google Scholar 

  37. Wu, D., Xie, H., Yin, Y., et al.: Micro-scale delaminating and buckling of thin film on soft substrate. J. Micromech. Microeng. 23, 03540 (2013)

    Google Scholar 

  38. Mohri, M., Nili-Ahmadabadi, M., PouryazdanPanah, M., et al.: Evaluation of structure and mechanical properties of Ni-rich NiTi/Kapton composite film. Mater. Sci. Eng. A 668, 13–19 (2016)

    Article  Google Scholar 

  39. Kirsch, B., Chen, X., Richman, E., et al.: Probing the effects of nanoscale architecture on the mechanical properties of hexagonal silica/polymer composite thin films. Adv. Funct. Mater. 15, 1319–1327 (2005)

    Article  Google Scholar 

  40. Geandier, G., Renault, P.-O., Le Bourhis, E., et al.: Elastic-strain distribution in metallic film-polymer substrate composites. Appl. Phys. Lett. 96, 041905 (2010)

    Article  Google Scholar 

  41. Hommel, M., Kraft, O., Arzt, E.: A new method to study cyclic deformation of thin films in tension and compression. J. Mater. Res. 14, 2373–2376 (1999)

    Article  Google Scholar 

  42. Schadler, L., Noyan, I.C.: Experimental Determination of the Strain Transfer Across a Flexible Intermediate Layer in Thin Film Structures as a Function of Flexible Layer Thickness//MRS Proceedings. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  43. Schadler, L., Noyan, I.: Experimental determination of the strain transfer across a flexible intermediate layer in thin-film structures. J. Mater. Sci. Lett. 11, 1067–1069 (1992)

    Article  Google Scholar 

  44. Yin, H., Prieto-Munoz, P.: Stress transfer through fully bonded interface of layered materials. Mech. Mater. 62, 69–79 (2013)

    Article  Google Scholar 

  45. Faurie, D., Renault, P.-O., Le Bourhis, E., et al.: Determination of elastic constants of a fiber-textured gold film by combining synchrotron X-ray diffraction and in situ tensile testing. J. Appl. Phys. 98, 093511 (2005)

    Article  Google Scholar 

  46. Wojciechowski, P., Mendolia, M.: Fracture and cracking phenomena in thin films adhering to high-elongation substrates. Phys. Thin Films 16, 271–340 (1991)

    Article  Google Scholar 

  47. Yanaka, M., Tsukahara, Y., Nakaso, N., et al.: Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain. J. Mater. Sci. 33, 2111–2119 (1998)

    Article  Google Scholar 

  48. Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261–3269 (2000)

    Article  Google Scholar 

  49. Belrhiti, Y., Gallet-Doncieux, A., Germaneau, A., et al.: Application of optical methods to investigate the non-linear asymmetric behavior of ceramics exhibiting large strain to rupture by four-points bending test. J. Eur. Ceram. Soc. 32, 4073–4081 (2012)

    Article  Google Scholar 

  50. Wu, D., Xie, H., Dai, X., et al.: A novel method to fabricate microgratings applied for deformation measurement around a crack in a thin film. Meas. Sci. Technol. 25, 025012 (2014)

    Article  Google Scholar 

  51. Hild, F., Roux, S.: Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42, 69–80 (2006)

    Article  Google Scholar 

  52. Duprfie, J., Doumalin, P., Husseini, H., et al.: Displacement discontinuity or complex shape of sample: assessment of accuracy and adaptation of local dic approach. Strain 51, 391–404 (2015)

    Article  Google Scholar 

  53. Barranger, Y., Doumalin, P., Duprfie, J., et al.: Strain measurement by digital image correlation: influence of two types of speckle patterns made from rigid or deformable marks. Strain 48, 357–365 (2012)

    Article  Google Scholar 

  54. Welzel, U., Ligot, J., Lamparter, P., et al.: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Crystallogr. 38, 1–29 (2005)

    Article  Google Scholar 

  55. Noyan, I., Huang, T., York, B.: Residual stress/strain analysis in thin films by X-ray difiraction. Crit. Rev. Solid State Mater. Sci. 20, 125–177 (1995)

    Article  Google Scholar 

  56. Stoney, G.: The tension of metallic films deposited by electrolysis. Containing papers of a mathematical and physical character. Proc. R. Soc. Lond. Ser. A 82, 172–175 (1990)

    Article  Google Scholar 

  57. Chou, T.-L., Yang, S.-Y., Chiang, K.-N.: Overview and applicability of residual stress estimation of film-substrate structure. Thin Solid Films 519, 7883–7894 (2011)

    Article  Google Scholar 

  58. Janssen, G., Abdalla, M., Van Keulen, F., et al.: Celebrating the 100th anniversary of the stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517, 1858–1867 (2009)

    Article  Google Scholar 

  59. Zhu, J., Xie, H., Hu, Z., et al.: Residual stress in thermal spray coatings measured by curvature based on 3d digital image correlation technique. Surf. Coat. Technol. 206, 1396–1402 (2011)

    Article  Google Scholar 

  60. Kim, C., Lee, T.-I., Kim, M., et al.: Warpage analysis of electroplated cu films on fiber-reinforced polymer packaging substrates. Polymers 7, 985–1004 (2015)

    Article  Google Scholar 

  61. Culity, B.: Elements of X-ray Diffraction. Addition-Wesley, London (1978)

    Google Scholar 

  62. Hauk, V.: Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  63. Noyan, I., Cohen, J.: Residual Stress: Measurement by Diffraction and Interpretation. Springer, New York (1987)

    Book  Google Scholar 

  64. Martinschitz, K., Daniel, R., Mitterer, C., et al.: Elastic constants of fibre-textured thin films determined by X-ray diffraction. J. Appl. Crystallogr. 42, 416–428 (2009)

    Article  Google Scholar 

  65. Faurie, D., Castelnau, O., Brenner, R., et al.: In situ diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation. J. Appl. Crystallogr. 42, 1073–1084 (2009)

    Article  Google Scholar 

  66. Clemens, B., Bain, J.: Stress determination in textured thin films using X-ray diffraction. MRS Bull. 17, 46–51 (1992)

    Article  Google Scholar 

  67. Krottenthaler, M., Schmid, C., Schauer, J., et al.: A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation. Surf. Coat. Technol. 215, 247–252 (2013)

    Article  Google Scholar 

  68. Zhu, J.G., Xie, H.M., Li, Y.J., et al.: Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method. Exp. Mech. 54, 127–136 (2014)

    Article  Google Scholar 

  69. Korsunsky, A., Sebastiani, M., Bemporad, E.: Focused ion beam ring drilling for residual stress evaluation. Mater. Lett. 63, 1961–1963 (2009)

    Article  Google Scholar 

  70. Zhu, R.H., Xie, H.M., Zhu, J.G., et al.: A microscale strain rosette for residual stress measurement by SEM Moire method. Sci. China Phys. Mech. Astron. 57, 716–722 (2014)

    Article  Google Scholar 

  71. Bemporad, E., Brisotto, M., Depero, L., et al.: A critical comparison between xrd and fib residual stress measurement techniques in thin films. Thin Solid Films 572, 224–231 (2014)

    Article  Google Scholar 

  72. Doerner, M.F., Nix, W.D.: Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225–268 (1988)

    Article  Google Scholar 

  73. Janssen, G.: Stress and strain in polycrystalline thin films. Thin Solid Films 515, 6654–6664 (2007)

    Article  Google Scholar 

  74. Lu, N., Suo, Z., Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679–1687 (2010)

    Article  Google Scholar 

  75. Oliver, W., Pharr, G.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  76. Zhu, J.G., Xie, H.M., Hu, Z., et al.: Cross-sectional residual stresses in thermal spray coatings measured by Moire interferometry and nanoindentation technique. J. Therm. Spray Technol. 21, 810–817 (2012)

    Article  Google Scholar 

  77. Zhu, J.G., Wei, C., Xie, H.M.: Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method. Sci. China Phys. Mech. Astron. 58, 1–10 (2015)

    Google Scholar 

  78. Javed, H., Merle, B., Prei, E., et al.: Mechanical characterization of metallic thin films by bulge and scratch testing. Surf. Coat. Technol. 289, 69–74 (2016)

    Article  Google Scholar 

  79. Djaziri, S., Faurie, D., Renault, P.O., et al.: Yield surface of polycrystalline thin films as revealed by non-equibiaxial loadings at small deformation. Acta Mater. 61, 5067–5077 (2013)

    Article  Google Scholar 

  80. Denis, Y., Spaepen, F.: The yield strength of thin copper films on kapton. J. Appl. Phys. 95, 2991–2997 (2004)

    Article  Google Scholar 

  81. Choi, Y., Lee, Y.-K.: Elastic modulus of amorphous Ge\(_2\)Sb\(_2\)Te\(_5\) thin film measured by uniaxial microtensile test. Electron. Mater. Lett. 6, 23–26 (2010)

    Article  Google Scholar 

  82. Chen, X., Kirsch, B., Senter, R., et al.: Tensile testing of thin films supported on compliant substrates. Mech. Mater. 41, 839–848 (2009)

    Article  Google Scholar 

  83. He, W., Goudeau, P., Bourhis, E.L., et al.: Study on young’s modulus of thin films on kapton by microtensile testing combined with dual DIC system. Surf. Coat. Technol. 308, 273–279 (2016)

    Article  Google Scholar 

  84. Faurie, D., Renault, P.-O., Bourhis, E.Le, et al.: Study of texture effect on elastic properties of au thin films by X-ray diffraction and in situ tensile testing. Acta Mater. 54, 4503–4513 (2006)

    Article  Google Scholar 

  85. Thomasov, M., Sedlk, P., Seiner, H., et al.: Youngs moduli of sputter-deposited niti films determined by resonant ultrasound spectroscopy: austenite, r-phase, and martensite. Scr. Mater. 101, 24–27 (2015)

    Article  Google Scholar 

  86. Lpez-Puerto, A., Avils, F., Gamboa, F., et al.: A vibrational approach to determine the elastic modulus of individual thin films in multilayers. Thin Solid Films 565, 228–236 (2014)

    Article  Google Scholar 

  87. Slima, M., Alhusseinb, A., Billard, A., et al.: On the determination of Young’s modulus of thin films with impulse excitation technique. J. Mater. Res. 32, 1–15 (2016)

    Google Scholar 

  88. Bauschinger, J.: Ueber die veranderung der elasticitatagrenze und der elasticitatamoduls verschiadener metalle. Zivilingenieur 27, 289–348 (1881)

    Google Scholar 

  89. Baker, S., Keller-Flaig, R.-M., et al.: Bauschinger effect and anomalous thermomechanical deformation induced by oxygen in passivated thin cu films on substrates. Acta Mater. 51, 3019–3036 (2003)

    Article  Google Scholar 

  90. Xiang, Y., Vlassak, J.J.: Bauschinger and size effects in thin-film plasticity. Acta Mater. 54, 5449–5460 (2006)

    Article  Google Scholar 

  91. Brugger, C., Coulombier, M., Massart, T., et al.: Strain gradient plasticity analysis of the strength and ductility of thin metallic films using an enriched interface model. Acta Mater. 58, 4940–4949 (2010)

    Article  Google Scholar 

  92. Zhou, C., LeSar, R.: Dislocation dynamics simulations of the bauschinger effect in metallic thin films. Comput. Mater. Sci. 54, 350–355 (2012)

    Article  Google Scholar 

  93. Rajagopalan, J., Rentenberger, C., Karnthaler, H., et al.: In situ tem study of microplasticity and bauschinger effect in nanocrystalline metals. Acta Mater. 58, 4772–4782 (2010)

    Article  Google Scholar 

  94. Rajagopalan, J., Han, J., Saif, M.: Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr. Mater. 59, 734–737 (2008)

    Article  Google Scholar 

  95. Shishvan, S., Nicola, L.Van, der Giessen, E.: Bauschinger effect in unpassivated freestanding thin films. J. Appl. Phys. 107, 093529 (2010)

    Article  Google Scholar 

  96. Guruprasad, P., Carter, W., Benzerga, A.: A discrete dislocation analysis of the bauschinger effect in microcrystals. Acta Mater. 56, 5477–5491 (2008)

    Article  Google Scholar 

  97. Liu, Z.-L., Zhuang, Z., Liu, X.-M., et al.: Bauschinger and size effects in thin-film plasticity due to defect-energy of geometrical necessary dislocations. Acta. Mech. Sin. 27, 266–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  98. Davoudi, K., Nicola, L., Vlassak, J.J.: Bauschinger effect in thin metal films: discrete dislocation dynamics study. J. Appl. Phys. 115, 013507 (2014)

    Article  Google Scholar 

  99. Xu, S., Yan, Z., Jang, K.-I., et al.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015)

    Article  Google Scholar 

  100. Song, J., Jiang, H., Liu, Z., et al.: Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008)

    Article  MATH  Google Scholar 

  101. Khang, D.-Y., Jiang, H., Huang, Y., et al.: A stretchable form of single crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  102. Renault, P.-O., Faurie, D., Le Bourhis, E., et al.: Deposition of ultra-thin gold film on in situ loaded polymeric substrate for compression tests. Mater. Lett. 73, 99–102 (2012)

    Article  Google Scholar 

  103. Faurie, D., Renault, P.-O., Le Bourhis, E., et al.: X-ray elastic strain analysis of compressed au thin film on polymer substrate. Surf. Coat. Technol. 215, 322–326 (2013)

    Article  Google Scholar 

  104. He, W., Renault, P.-O., Le Bourhis, E., et al.: Cyclic testing of thin Ni films on a pre-tensile compliant substrate. Mater. Sci. Eng. A 695, 112–119 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11472186 and 11602083) and the Natural Science Foundation of Hunan Province, China (Grant 2016JJ6044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Han, M., Wang, S. et al. Micromechanics of substrate-supported thin films. Acta Mech. Sin. 34, 381–391 (2018). https://doi.org/10.1007/s10409-017-0697-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0697-0

Keywords

Navigation