Skip to main content
Log in

Amplitude modulation and extreme events in turbulent channel flow

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Amplitude modulation of near-wall turbulence by large-scale structures in the outer layer is investigated by direct numerical simulation of turbulent channel flows at Reynolds number \(Re_{\tau } =540\), 1000, 2000. The effect of modulation is obvious in the two-point cross-section correlation map, and the correlation coefficients increase significantly with the Reynolds number. The influence of modulation is reflected in the tail of the probability density function of the near-wall flow signals, which expands as the Reynolds number increases. The flatness factor provides a quantitative description of the high fluctuation events due to modulation. Vortical structures associated with modulation are revealed by conditionally averaging the flow field of the near-wall extreme events, providing a depiction of how the influence of the large-scale structures penetrate towards the near-wall region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jiménez, J., Del Álamo, J.C., Flores, O.: The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  Google Scholar 

  4. Abe, H., Kawamura, H., Choi, H.: Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re-tau=640. J. Fluid Eng. 126, 835–843 (2004)

    Article  Google Scholar 

  5. Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. A 365, 647–664 (2007)

    Article  MATH  Google Scholar 

  6. Agostini, L., Leschziner, M.A.: On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26, 075107 (2014)

  7. Brown, G.L., Thomas, A.S.: Large structure in a turbulent boundary layer. Phys. Fluids 20, S243–S252 (1977)

    Article  Google Scholar 

  8. Bandyopadhyay, P.R., Hussain, A.K.M.F.: The coupling between scales in shear flows. Phys. Fluids 27, 2221–2228 (1984)

    Article  Google Scholar 

  9. Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)

    Article  MATH  Google Scholar 

  10. Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23, 061701 (2011)

  11. Talluru, K.M., Baidya, R., Hutchins, N., et al.: Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, 690–703 (2014)

  12. Agostini, L., Leschziner, M., Gaitonde, D.: Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures. Phys. Fluids 28, 015110 (2016)

    Article  Google Scholar 

  13. Ganapathisubramani, B., Hutchins, N., Monty, J.P., et al.: Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 61–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baars, W.J., Talluru, K.M., Hutchins, N., et al..: Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56, 1–15 (2015)

  15. Marusic, I., Mathis, R., Hutchins, N.: Predictive model for wall-bounded turbulent flow. Science 329, 193–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mathis, R., Hutchins, N., Marusic, I.: A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537–566 (2011)

    Article  MATH  Google Scholar 

  17. Mathis, R., Marusic, I., Chernyshenko, S.I., et al.: Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chernyshenko, S.I., Marusic, I., Mathis, R.: Quasi-steady description of modulation effects in wall turbulence. arXiv:1203.3714. (2012)

  19. Zhang, C., Chernyshenko, S.I.: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1, 014401 (2016)

    Article  Google Scholar 

  20. Marusic, I., Baars, W.J., Hutchins, N.: An extended view of the inner-outer interaction model for wall-bounded turbulence using spectral linear stochastic estimation. Proc. Eng. 126, 24–28 (2015)

    Article  Google Scholar 

  21. Inoue, M., Mathis, R., Marusic, I., et al.: Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24, 075102 (2012)

  22. Schlatter, P., Orlu, R.: Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Phys. Fluids 22, 051704 (2010)

  23. Mathis, R., Marusic, I., Hutchins, N., et al..: The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23, 121702 (2011)

  24. Duvvuri, S., Mckeon, B.J.: Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4 (2015)

  25. Xu, C., Zhang, Z., Dentoonder, J.M.J., et al.: Origin of high kurtosis levels in the viscous sublayer. Direct numerical simulation and experiment. Phys. Fluids 8, 1938–1944 (1996)

    Article  Google Scholar 

  26. Lenaers, P., Li, Q., Brethouwer, G., et al.: Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24, 035110 (2012)

  27. Hu, Z.W., Morfey, C.L., Sandham, N.D.: Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44, 1541–1549 (2006)

    Article  Google Scholar 

  28. Cardesa, J.I., Monty, J.P., Soria, J., et al..: Skin-friction critical points in wall-bounded flows. J. Phys. Conf. Ser. 506, 012009 (2014)

  29. Brucker, C.: Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging. Phys. Fluids 27, 031705 (2015)

  30. Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to Re-tau=4200. Phys. Fluids 26, 011702 (2014)

  31. Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to Re-tau approximate to 5200. J. Fluid Mech. 774, 395–415 (2015)

    Article  Google Scholar 

  32. Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to Re\({\uptheta }\)= 8300. Int. J. Heat Fluid Flow 47, 57–69 (2014)

    Article  Google Scholar 

  33. Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Ann. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  34. Spalart, P.R., Coleman, G.N.: Numerical study of a separation bubble with heat transfer. Eur. J. Mech. B-Fluid 16, 169–189 (1997)

    MATH  Google Scholar 

  35. Marusic, I., Heuer, W.D.C.: Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99, 114504 (2007)

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11490551, 11472154, and 11322221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. X. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y.C., Huang, W.X. & Xu, C.X. Amplitude modulation and extreme events in turbulent channel flow. Acta Mech. Sin. 34, 1–9 (2018). https://doi.org/10.1007/s10409-017-0687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0687-2

Keywords

Navigation