Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 2, pp 349–358 | Cite as

Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions

  • Jianming He
  • Lekan Olatayo Afolagboye
Research Paper

Abstract

The mechanical behavior of inherently anisotropic shale rocks under Brazilian test conditions are investigated in this study based on experimental studies and numerical simulations. The effects of the weak lamination planes and interlayer bonding force of these layers on the failure strength and fracture patterns are studied systematically. Numerical simulations using particle flow code in two dimensions based on the discrete element method showed a good agreement with the experimental results in the failure strength and fracture patterns. The shale revealed strong anisotropic behavior with the failure strength perpendicular to the lamination plane greater than failure strength parallel to lamination plane. The failure strength of the different interlayer bonding force against the layer orientations changed significantly. Four types of fracture patterns were observed: curved fracture, broken-linear fracture, layer-activated fracture, and central-linear fracture. The observed fracture patterns are either or a combination of tensile and/or shear fractures. Increase in interlayer bonding strength decreased the quantity of micro cracks and this directly led to reduction in the anisotropic behavior. Overall the layer orientation and interlayer bonding force of the shale thus play a very important role in the anisotropic behavior of the shale.

Keywords

Anisotropy Interlayer bonding force Layer orientation Mechanical behavior Shale 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 41572310, 41272351, and 41227901) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants XDB10030301 and XDB10030304). Authors acknowledge their sincere thanks to Prof. Jijin Yang and Prof. Lihui Li for their helpful microscopic information on the shale.

References

  1. 1.
    Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior. Wiley, New York (2005)Google Scholar
  2. 2.
    Terzagi, K., Peck, R.B., Gholamreza, M.: Soil Mechanics in Engineering Practice. Wiley, New York (1996)Google Scholar
  3. 3.
    Boggs, S.J.: Principles of Sedimentology and Stratigraphy. Merrill Publishing Company, Westerville (1987)Google Scholar
  4. 4.
    Chen, C.-S., Pan, E., Amadei, B.: Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int. J. Rock Mech. Min. Sci. 35, 43–61 (1998)CrossRefGoogle Scholar
  5. 5.
    Andreev, G.E.: A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Min. Sci. Technol. 13, 457–465 (1991)CrossRefGoogle Scholar
  6. 6.
    Andreev, G.E.: A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Min. Sci. Technol. 13, 445–456 (1991)CrossRefGoogle Scholar
  7. 7.
    Perras, M.A., Diederichs, M.S.: A review of the tensile strength of rock: concepts and testing. Geotech. Geol. Eng. 32, 525–546 (2014)CrossRefGoogle Scholar
  8. 8.
    ISRM: Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. 15, 99–103 (1978)Google Scholar
  9. 9.
    Amadei, B., Rogers, J.D., Goodman, R.E.: Elastic Constants and Tensile Strength of Anisotropic Rocks. In: 5th ISRM Congress, ISRM-5CONGRESS-1983-030. Melbourne, Australia (1983)Google Scholar
  10. 10.
    Lekhnitskii, S.G.: Anisotropic Plates. Gordon and Breach, New York (1968)Google Scholar
  11. 11.
    Chen, C., Pan, E., Amadei, B.: Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 35, 43–61 (1998)CrossRefGoogle Scholar
  12. 12.
    Tavallali, A., Vervoort, A.: Failure of transversely isotropic rock material: effect of layer orientation and material properties. In: The 6th International Symposium on Ground Support in Mining and Civil engineering Construction, 317–328. Cape Town, South Africa (2008)Google Scholar
  13. 13.
    Vervoort, A., Tavallali, A.: Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 47, 313–322 (2010)Google Scholar
  14. 14.
    Tavallali, A., Vervoort, A.: Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech. Rock Eng. 43, 641–653 (2010)CrossRefGoogle Scholar
  15. 15.
    Tan, X., Konietzky, H., Frühwirt, T., et al.: Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech. Rock Eng. 48, 1341–1351 (2015)CrossRefGoogle Scholar
  16. 16.
    Lisjak, A., Tatone, B.S.A., Grasselli, G., et al.: Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using FEM/DEM. Rock Mech. Rock Eng. 47, 187–206 (2014)CrossRefGoogle Scholar
  17. 17.
    Duan, K., Kwok, C.Y.: Discrete element modeling of anisotropic rock under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 78, 46–56 (2015)Google Scholar
  18. 18.
    Lanaro, F., Sato, T., Stephansson, O.: Microcrack modelling of Brazilian tensile tests with the boundary element method. Int. J. Rock Mech. Min. Sci. 46, 450–461 (2009)CrossRefGoogle Scholar
  19. 19.
    Mark, D.Z.: Reservoir Geomechanics. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  20. 20.
    Tavallali, A., Vervoort, A.: Behaviour of layered sandstone under Brazilian test conditions: layer orientation and shape effects. J. Rock Mech. Geotech. Eng. 5, 366–377 (2013)Google Scholar
  21. 21.
    Scholtès, L., Donzé, F.-V.: A DEM model for soft and hard rocks: role of grain interlocking on strength. J. Mech. Phys. Solids 61, 352–369 (2013)CrossRefGoogle Scholar
  22. 22.
    Weng, M.C., Li, H.H.: Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model. Int. J. Rock Mech. Min. Sci. 56, 34–43 (2012)Google Scholar
  23. 23.
    Shimizu, H., Murata, S., Ishida, T.: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 48, 712–727 (2011)CrossRefGoogle Scholar
  24. 24.
    Cundall, P.A.: A discontinuous future for numerical modelling in geomechanics? Proc. Inst. Civ. Eng. Geotech. Eng. 149, 41–47 (2001)CrossRefGoogle Scholar
  25. 25.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations