Skip to main content
Log in

High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zeldovich, Y.A., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)

    Google Scholar 

  2. Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993)

    Google Scholar 

  3. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  4. Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)

    Article  Google Scholar 

  5. Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)

  6. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  8. Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)

    Article  Google Scholar 

  9. Pintgen, F., Eckett, C.A., Austin, J.M., et al.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)

    Article  Google Scholar 

  10. Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M., et al.: Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 2117–2126 (2015)

    Article  Google Scholar 

  11. Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)

    Article  Google Scholar 

  12. Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)

    Article  MATH  Google Scholar 

  13. Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klöckner, A., Warburton, T., Bridge, J., et al.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228, 7863–7882 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, America (1973)

  16. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. J. Sci. Comp. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Arnold, D.N., Brezzi, F., Cockburn, B., et al.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 197–208 (2000)

  26. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)

    Google Scholar 

  30. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  32. Rusanov, V.V.: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)

    Google Scholar 

  33. Ma, P.C., Lv, Y., Ihme, M.: Discontinuous Galerkin scheme for turbulent flow simulations. Annual Research Briefs, Center for Turbulence Research, 225–236 (2015)

  34. Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  35. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, C., Zhang, X., Shu, C.-W., et al.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121, 545–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lv, Y., Ihme, M.: Entropy-bounded discontinuous Galerkin scheme for Euler equations. J. Comput. Phys. 295, 715–739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA 2006-112 (2006)

  40. Krivodonova, L., Xin, J., Remacle, J.-F., et al.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vuik, M.J., Ryan, J.K.: Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tadmor, E.: A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2, 211–219 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris, Ser. I 346, 801–806 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lax, P.D.: Shock waves and entropy. In: Zarantonello E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York and London, 603–634 (1971)

  46. Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, J., Zhong, X., Shu, C.-W., et al.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA 2007-914 (2007)

  51. Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I formulation. J. Comput. Phys. 229, 1810–1827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  53. Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 381, 129–163 (1996)

  54. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flows. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry 3, 83–90 (1991)

    Google Scholar 

  57. Sjunnesson, A., Olovsson, S., Sjoblom, B.: Validation rig—a tool for flame studies. In: 10th International Symposium on Air Breathing Engines. Nottingham, England, 385–393 (1991)

  58. Ghani, A., Poinsot, T., Gicquel, L., et al.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)

    Article  Google Scholar 

  59. Gamezo, V.N., Desbords, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation. Shock Waves 9, 11–17 (1999)

    Article  Google Scholar 

  60. Ohyagi, S., Obara, T., Hoshi, S., et al.: Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12, 221–226 (2002)

    Article  Google Scholar 

  61. Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H\(_2\)/O\(_2\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)

    Article  Google Scholar 

  62. Lv, Y., Ihme, M.: Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst. 35, 1963–1972 (2015)

    Article  Google Scholar 

  63. de Wiart, Carton C., Hillewaert, K., et al.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78, 335–354 (2015)

  64. Kanner, S., Persson, P.-O.: Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54, 101–112 (2015)

    Article  Google Scholar 

  65. Beck, A.D., Bolemann, T., Flad, D., et al.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76, 522–548 (2014)

    Article  MathSciNet  Google Scholar 

  66. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an Early Career Faculty grant from NASA’s Space Technology Research Grants Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ihme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Ihme, M. High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows. Acta Mech. Sin. 33, 486–499 (2017). https://doi.org/10.1007/s10409-017-0664-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0664-9

Keywords

Navigation