Skip to main content
Log in

Tough and tunable adhesion of hydrogels: experiments and models

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bobyn, J., Wilson, G., MacGregor, D., et al.: Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982)

    Article  Google Scholar 

  2. Moretti, M., Wendt, D., Schaefer, D., et al.: Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005)

    Article  Google Scholar 

  3. Waite, J.H.: Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)

    Article  Google Scholar 

  4. Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.: Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015)

    Article  Google Scholar 

  5. Qin, Z., Buehler, M.J.: Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)

  6. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)

    Article  Google Scholar 

  7. Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)

    Article  Google Scholar 

  8. Keplinger, C., Sun, J.-Y., Foo, C.C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

    Article  Google Scholar 

  9. Lin, S., Yuk, H., Zhang, T., et al.: Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016)

    Article  Google Scholar 

  10. Dong, L., Agarwal, A.K., Beebe, D.J., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

    Article  Google Scholar 

  11. Beebe, D.J., Moore, J.S., Bauer, J.M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)

    Article  Google Scholar 

  12. Yu, C., Duan, Z., Yuan, P., et al.: Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)

    Article  Google Scholar 

  13. Sudre, G., Olanier, L., Tran, Y., et al.: Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012)

    Article  Google Scholar 

  14. Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031–2047 (2013)

    Article  Google Scholar 

  15. Wu, C.J., Wilker, J.J., Schmidt, G.: Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59–66 (2013)

    Article  Google Scholar 

  16. Rose, S., Prevoteau, A., Elzière, P., et al.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014)

    Article  Google Scholar 

  17. Waite, J.H., Tanzer, M.L.: Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981)

    Article  Google Scholar 

  18. Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006)

    Article  Google Scholar 

  19. Qin, Z., Buehler, M.J.: Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19–30 (2014)

    Article  Google Scholar 

  20. Lin, Q., Gourdon, D., Sun, C., et al.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782–3786 (2007)

    Article  Google Scholar 

  21. Brubaker, C.E., Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326–4334 (2011)

    Article  Google Scholar 

  22. Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2007)

    Article  Google Scholar 

  23. Lee, B.P., Dalsin, J.L., Messersmith, P.B.: Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038–1047 (2002)

    Article  Google Scholar 

  24. Kim, B.J., Oh, D.X., Kim, S., et al.: Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014)

    Article  Google Scholar 

  25. Kurokawa, T., Furukawa, H., Wang, W., et al.: Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010)

    Article  Google Scholar 

  26. Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)

  27. Yuk, H., Zhang, T., Lin, S., et al.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)

    Article  Google Scholar 

  28. Gent, A., Lai, S.M.: Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543–1555 (1994)

    Article  Google Scholar 

  29. Creton, C., Kramer, E.J., Brown, H.R., et al.: Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scale. In: Molecular Simulation Fracture Gel Theory, Springer, 53–136 (2001)

  30. Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1–45 (2002)

    Article  Google Scholar 

  31. Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016)

    Article  Google Scholar 

  32. Ahagon, A., Gent, A.: Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285–1300 (1975)

    Article  Google Scholar 

  33. Gent, A.: Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996)

    Article  Google Scholar 

  34. Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997)

    Article  Google Scholar 

  35. Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203–228 (1998)

    Article  Google Scholar 

  36. Xu, D.B., Hui, C.Y., Kramer, E.J.: Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305–3316 (1992)

    Article  Google Scholar 

  37. Creton, C.: Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003)

    Article  Google Scholar 

  38. Villey, R., Creton, C., Cortet, P.-P., et al.: Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480–3491 (2015)

    Article  Google Scholar 

  39. Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417–435 (1988)

    Article  Google Scholar 

  40. Kim, K.-S., Kim, J.: Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266–273 (1988)

    Article  Google Scholar 

  41. Wei, Y., Hutchinson, J.W.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1998)

    Article  Google Scholar 

  42. Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)

    Article  Google Scholar 

  43. Hoefnagels, J., Neggers, J., Timmermans, P., et al.: Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875–878 (2010)

    Article  Google Scholar 

  44. Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.: Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117–132 (2014)

    Article  Google Scholar 

  45. Neggers, J., Hoefnagels, J., van der Sluis, O., et al.: Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26–36 (2015)

    Article  Google Scholar 

  46. Vossen, B., van der Sluis, O., Schreurs, P., et al.: High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93–105 (2016)

  47. Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    Article  Google Scholar 

  48. Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  Google Scholar 

  49. Zhang, T., Lin, S., Yuk, H., et al.: Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1–8 (2015)

    Article  Google Scholar 

  50. Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989–2023 (1978)

    Article  Google Scholar 

  51. Rahul-Kumar, P., Jagota, A., Bennison, S., et al.: Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161–4169 (1999)

    Article  Google Scholar 

  52. Mohammed, I., Liechti, K.M.: Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735–764 (2000)

    Article  MATH  Google Scholar 

  53. Rahulkumar, P., Jagota, A., Bennison, S., et al.: Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37, 1873–1897 (2000)

    Article  MATH  Google Scholar 

  54. Allen, D.H., Searcy, C.R.: A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159–176 (2001)

    Article  Google Scholar 

  55. Yang, Q., Thouless, M., Ward, S.: Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)

    Article  MATH  Google Scholar 

  56. Su, C., Wei, Y., Anand, L.: An elastic–plastic interface constitutive model: application to adhesive joints. Int. J. Plast. 20, 2063–2081 (2004)

    Article  MATH  Google Scholar 

  57. Ogden, R., Roxburgh, D.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. A. 455, 2861–2877 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Systèmes, D.: Abaqus Analysis User’s Manual. Simulia Corp., Providence (2007)

    Google Scholar 

  59. Kendall, K.: Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)

    Article  Google Scholar 

  60. Kanan, S.M., Tze, W.T., Tripp, C.P.: Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623–6627 (2002)

  61. Moon, J.H., Shin, J.W., Kim, S.Y., et al.: Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621–4624 (1996)

  62. Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013)

    Article  Google Scholar 

  63. Ducrot, E., Chen, Y., Bulters, M., et al.: Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014)

    Article  Google Scholar 

  64. Autumn, K., Liang, Y.A., Hsieh, S.T., et al.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)

    Article  Google Scholar 

  65. Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)

    Article  MATH  Google Scholar 

  66. Yuk, H., Lin, S., Ma, C., et al.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017)

  67. Liu, X., Tang, T., Tham, E., et al.: Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200–2205 (2017)

Download references

Acknowledgements

This work is supported by the Office Naval Research (Grant N00014-14-1-0528), Draper Laboratory, MIT Institute for Soldier Nanotechnologies and the National Science Foundation (Grant CMMI-1253495). Hyunwoo Yuk acknowledges the financial support from Samsung Scholarship. Xuanhe Zhao acknowledges the supports from the National Institutes Health (Grant UH3TR000505). The authors are also grateful for the support from MIT research computing resources and the Extreme Science and Engineering Discovery Environment (XSEDE) (Grant TG-MSS160007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanhe Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (m4v 37391 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yuk, H., Lin, S. et al. Tough and tunable adhesion of hydrogels: experiments and models. Acta Mech. Sin. 33, 543–554 (2017). https://doi.org/10.1007/s10409-017-0661-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0661-z

Keywords

Navigation