Skip to main content
Log in

Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker’s linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from −48.17 to −34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\bar{{a}}_{ij} , \bar{{b}}_{ij} \) :

Semi axis lengths of the wheel/rail elliptical contact region

\(C_{11,ij} \) :

Lateral creepage for new nonlinear creep model

\(C_{22,ij} \) :

Lateral/spin creepage for new nonlinear creep model

\(C_{23,ij} \) :

Spin creepage for new nonlinear creep model

\(C_{33,ij} \) :

Longitudinal creepage for new nonlinear creep model

\(f_{11,ij} \) :

Lateral creep coefficient for new nonlinear creep model

\(f_{12,ij} \) :

Lateral/spin creep coefficient for new nonlinear creep model

\(f_{22,ij} \) :

Spin creep coefficient for new nonlinear creep model

\(f_{33,ij} \) :

Longitudinal creep coefficient for new nonlinear creep model

\(F_{kxij} , F_{kyij} \) :

Linear creep force on wheels in lateral and vertical directions, respectively

\(F_{kxij}^*, F_{kyij}^*\) :

Linear creep force on wheels obtained from Kalker linear theory in lateral and vertical directions, respectively

\(F_{kxij}^n , F_{kyij}^n \) :

Nonlinear creep force on wheels in lateral and vertical directions, respectively

\(F_{syc} , F_{szc} \) :

Suspension force on car body in lateral and vertical directions, respectively

\(F_{syij} , F_{szij} \) :

Suspension force on each wheelset in lateral and vertical directions, respectively

\(F_{syti} , F_{szti} \) :

Suspension forces on each bogie frame in lateral and vertical directions, respectively

G :

Combined shear modulus of rigidity of wheel and rail materials

\(G\left( t \right) \) :

Global best position in iteration t for quantum-behaved particle swarm optimization (QPSO)

\(M_{exij} \) :

External moment on each wheelset in longitudinal direction

\(M_{kxij} , M_{kzij} \) :

Linear creep moment on each wheel in longitudinal and vertical directions, respectively

\(M_{kzij}^n \) :

Nonlinear creep moment on each wheel in vertical direction

\(M_{sxc} , M_{szc} \) :

Suspension moment on car body in longitudinal and vertical directions, respectively

\(M_{sxij} , M_{szij} \) :

Suspension moment on each wheelset in longitudinal and vertical directions, respectively

\(M_{sxti} , M_{szti} \) :

Suspension moment on each bogie frame in longitudinal and vertical directions, respectively

\(N_{ij}^*\) :

Normal force in equilibrium state on each wheelset

\(P_\ell \left( t \right) \) :

The best position of particle \(\ell \) for QPSO

\(r_0 \) :

Wheel nominal rolling radius

\(r_{i1} \) :

Wheel rolling radius of the front wheel of the ith bogie frame (\(i=1, 2\))

\(r_{i2} \) :

Wheel rolling radius of the rear wheel of the ith bogie frame (\(i=1, 2\))

\(\Delta r_{i1} \) :

Noise of \(r_{i1} (i=1, 2)\)

\(\Delta r_{i2} \) :

Noise of \(r_{i2} (i=1, 2)\)

\(r_{Lij} , r_{Rij} \) :

Rolling radius at the contact point for the left and right wheel

t :

Time

V :

Forward speed of the vehicle

\(W_{\mathrm{ext}} \) :

External weight acting on each wheelset

\(X_\ell \left( t \right) \) :

Position of particle \(\ell \) in iteration t for QPSO

\(\alpha _{ij}^*\) :

Saturation constant of front and rear wheelsets for new nonlinear creep model

\(\beta _{ij}^*\) :

Nonlinearity constant of front and rear wheelsets for new nonlinear creep model

\(\beta _{kij} \) :

Nonlinearity constant of left and right wheels for new nonlinear creep model

\(\lambda \) :

Wheel conicity

\(\Delta \lambda \) :

Noise of \(\lambda \)

\(\zeta \) :

Contraction-expansion coefficient

References

  1. Zeng, X.H., Wu, H., Lai, J., et al.: Hunting stability of high-speed railway vehicles on a curved track considering the effects of steady aerodynamic loads. J. Vib. Control 22, 4159–4175 (2016)

    Article  Google Scholar 

  2. Zeng, X.H., Wu, H., Lai, J., et al.: Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies. Acta Mech. Sin. 30, 889–900 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Molatefi, H., Hecht, M., Kadivar, M.H.: Critical speed and limit cycles in the empty y25-freight wagon. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 220, 347–359 (2006)

    Article  Google Scholar 

  4. Wang, K.Y., Liu, P.F.: Lateral stability analysis of heavy-haul vehicle on curved track based on wheel/rail coupled dynamics. J. Transp. Technol. 2, 150–157 (2012)

    Article  Google Scholar 

  5. Kim, P., Seok, J.: Bifurcation analysis on the hunting behavior of a dual-bogie railway vehicle using the method of multiple scales. J. Sound Vib. 329, 4017–4039 (2010)

    Article  Google Scholar 

  6. Karim, H., Ali, A., Rasheed, A.K.: Investigation to improve hunting stability of railway carriage using semi-active longitudinal primary stiffness suspension. J. Mech. Eng. Res. 2, 97–105 (2010)

    Google Scholar 

  7. Michal, M., Michael, H.: Effects of speed, load and damping on the dynamic response of railway bridges and vehicles. Comput. Struct. 86, 556–572 (2008)

    Article  Google Scholar 

  8. Ranjbar, M., Ghazavi, M.R.: Lateral stability analysis of high-speed railway vehicle on curve. In: Proceeding of International Conference on Advances in Robotic, Mechanical Engineering and Design, Chandigarh, 11–14 (2012)

  9. Gao, X.J., Li, Y.H., Yue, Y., et al.: Symmetric/asymmetric bifurcation behaviours of a bogie system. J. Sound Vib. 332, 936–951 (2013)

    Article  Google Scholar 

  10. Molatefi, H., Hecht, M., Kadivar, M.H.: Effect of suspension system in the lateral stability of railway freight trucks. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 221, 399–407 (2007)

    Article  Google Scholar 

  11. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46, 27–48 (2008)

    Article  Google Scholar 

  12. Pombo, J., Ambrósio, J., Silva, M.: A new wheel-rail contact model for railway dynamics. Veh. Syst. Dyn. 45, 165–189 (2007)

    Article  Google Scholar 

  13. Polach, O.: On non-linear methods of bogie stability assessment using computer simulations. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 220, 13–27 (2006)

    Article  Google Scholar 

  14. Kovalev, R., Yazykov, V.N., Mikhalchenko, G.S., et al.: Railway vehicle dynamics: some aspects of wheel-rail contact modeling and optimization of running gears. Mech. Based Des. Struct. Mach. 31, 315–334 (2003)

    Article  Google Scholar 

  15. Shen, G., Zhong, X.: A design method for wheel profiles according to the rolling radius difference function. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 225, 457–462 (2011)

    Article  Google Scholar 

  16. Sun, S., Li, L., Zhou, J., et al.: Influence of wheel diameter difference on safety and stationarity of vehicles crawling over the curved bridge. Appl. Mech. Mater. 209–211, 2117–2120 (2012)

    Google Scholar 

  17. He, Y., McPhee, J.: Optimization of the lateral stability of rail vehicles. Veh. Syst. Dyn. 38, 361–390 (2002)

    Article  Google Scholar 

  18. He, Y., McPhee, J.: Optimization of curving performance of rail vehicles. Veh. Syst. Dyn. 43, 859–923 (2005)

    Google Scholar 

  19. Sayyaadi, H., Shokouhi, N.: New dynamics model for rail vehicles and optimizing air suspension parameters using GA. Sci. Iran. 16, 496–512 (2009)

    Google Scholar 

  20. Wu, Q., Cole, C., McSweeney, T.: Applications of particle swarm optimization in the railway domain. Int. J. Rail Transp. 4, 167–190 (2016)

    Article  Google Scholar 

  21. Cheng, Y.C., Lee, C.K.: Robust design of suspension parameters for high speed railway vehicle based on uniform design and kriging interpolation. Int. J. Adv. Mechatron. Syst. 3, 268–278 (2011)

    Article  Google Scholar 

  22. Lee, C.K., Cheng, Y.C.: Application of uniform design and quantum-behaved particle swarm optimization in solving the sensitivity problem a railway vehicle system. Procedia Eng. 79, 4227–4436 (2014)

    Google Scholar 

  23. Nejlaoui, M., Houidi, A., Affi, Z., et al.: Multiobjective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criteria. Simul. Model. Pract. Theory 30, 21–34 (2013)

    Article  Google Scholar 

  24. Lee, K.K., Park, C.K., Han, S.H.: Robust design of railway vehicle suspension using a process capability index. J. Mech. Sci. Technol. 24, 215–218 (2010)

    Article  Google Scholar 

  25. Cheng, Y.C.: Hunting stability analysis of a railway vehicle system using a novel non-linear creep model. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 226, 612–629 (2012)

    Article  Google Scholar 

  26. Vidyasager, M.: Nonlinear Systems Analysis. Prentice-Hall Press, Hyderabad (1978)

    Google Scholar 

  27. Garg, V.K., Dukkipati, R.V.: Dynamics of Railway Vehicle Systems. Academic Press, Orlanda (1984)

    Google Scholar 

  28. Adachi, M., Terumichi, Y., Suda, Y., et al.: Analysis on wheel load variation in coupled motion between wheel and track. Trans. Jpn. Soc. Mech. Eng. Ser. C 73, 748–755 (2007)

    Article  Google Scholar 

  29. Ahmed, A.K.W., Sankar, S.: Lateral stability behavior of railway freight car system with elasto-damper coupled wheelset: part 2—truck model. Trans. ASME J. Mech. Transm. Autom. Des. 109, 500–507 (1987)

    Article  Google Scholar 

  30. John, A.R.: Mathematical Statistics and Data Analysis, 2nd edn. Duxbury Press, Belmont (1994)

    Google Scholar 

  31. Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman & Hall Press, London (1994)

    Book  MATH  Google Scholar 

  32. Wang, J.M., Lan, S., Li, W.K.: Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design. Energy 72, 521–535 (2014)

    Article  Google Scholar 

  33. Li, D.J., Song, J.F., Xu, A.Q., et al.: Optimization of the ultrasound-assisted synthesis of lutein disuccinate using uniform design. Ultrason. Sonochem. 21, 98–103 (2014)

    Article  Google Scholar 

  34. Dai, C., Wang, Y.: A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization. Appl. Soft Comput. J. 30, 238–248 (2015)

    Article  Google Scholar 

  35. Voratas, K.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manag. Syst. 11, 215–223 (2012)

    Google Scholar 

  36. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. IEEE Congr. Evol. Comput. 1, 325–331 (2004)

  37. Sun, J., Wu, X., Palade, V., et al.: Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf. Sci. 193, 81–103 (2012)

    Article  MathSciNet  Google Scholar 

  38. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  39. Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. IEEE Conf. Cybern. Intell. Syst. 1, 111–116 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Science and Technology of Taiwan (Grants MOST 104-2221-E-327-019, MOST 105-2221-E-327-014) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Chang Cheng.

Appendices

Appendix A: System parameters (Refs. [10, 28, 29])

Parameters

Value

Wheelset mass

\(m_w =1117.9\) kg

Bogie frame mass

\(m_t =350.26\) kg

Car body mass

\(m_c =8041.3\) kg

Roll moment of the inertia of the wheelset

\(I_{wx} =608.1 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Spin moment of the inertia of the wheelset

\(I_{wy} =72 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Yaw moment of the inertia of the wheelset

\(I_{wz} =608.1 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Roll moment of the inertia of the bogie frame

\(I_{tx} =300 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Yaw moment of the inertia of the bogie frame

\(I_{tz} =105.2 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Roll moment of the inertia of the car body

\(I_{cx} =14270 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Yaw moment of the inertia of the car body

\(I_{cz} =123760.5 \,\,\hbox {kg}\cdot \hbox {m}^{2}\)

Wheel radius

\(r_0 =0.43\) m

Half of track gauge

\(a=0.7175\) m

Wheel conicity

\(\lambda =0.05\)

Half of primary longitudinal spring arm

\(b_1 =1.0\) m

Half of primary longitudinal damping arm

\(b_1 =1.0\) m

Half of primary vertical spring arm

\(b_1 =1.0\) m

Half of primary vertical damping arm

\(b_1 =1.0\) m

Half of secondary longitudinal spring arm

\(b_2 =1.18\) m

Half of secondary longitudinal damping arm

\(b_3 =1.4\) m

Half of secondary vertical spring arm

\(b_2 =1.18\) m

Half of secondary vertical damping arm

\(b_3 =1.4\) m

Half of primary lateral spring arm

\(L_1 =1.5\) m

Half of primary lateral damping arm

\(L_2 =1.5\) m

Longitudinal distance from wheelset center of gravity to car body

\(L_c =4.2\) m

Height of external weight above center of gravity of wheelset

\(h=1.4\) m

Vertical distance from wheelset center of gravity to car body

\(h_C =1.67\) m

Vertical distance from wheelset center of gravity to secondary suspension

\(h_T =0.47\) m

Longitudinal stiffness of primary suspension

\(K_{px} = 9\times 10^{5}\) N/m

Lateral stiffness of primary suspension

\(K_{py} =3.9\times 10^{5}\) N/m

Vertical stiffness of primary suspension

\(K_{pz} =6\times 10^{5}\) N/m

Vertical damping of primary suspension

\(C_{pz} =4\times 10^{4} \,\,\hbox {N}\cdot \hbox {s}\)/m

Longitudinal stiffness of secondary suspension

\(K_{sx} =3.5\times 10^{4}\) N/m

Lateral stiffness of secondary suspension

\(K_{sy} =3.5\times 10^{4}\) N/m

Vertical stiffness of secondary suspension

\(K_{sz} =3.5\times 10^{5}\) N/m

Longitudinal damping of secondary suspension

\(C_{sx} =3.2\times 10^{4} \,\,\hbox {N}\cdot \hbox {s}\)/m

Lateral damping of secondary suspension

\(C_{sy} =1\times 10^{4} \,\,\hbox {N}\cdot \hbox {s}\)/m

Vertical damping of secondary suspension

\(C_{sz} =4\times 10^{4} \,\,\hbox {N}\cdot \hbox {s}\)/m

Radius of curved tracks

\(R=1500\) m

Superelevation angle of curved track

\(\phi _{se} =0.0524\) rad

External load

\(W_\mathrm{ext} =5.6\times 10^{4}\) N

Coefficient of friction

\(f=0.2\)

Normal force acting on wheelset in equilibrium state

\(N={W_\mathrm{ext} }/2\) N

Young’s modulus of wheels

\(E_w =2.058\times 10^{11}\) Pa

Young’s modulus of rails

\(E_R =2.058\times 10^{11}\) Pa

Poisson’s ratio of wheels

\(\sigma _R =0.3\)

Poisson’s ratio of rails

\(\sigma _w =0.3\)

Principal rolling radius of the wheel

\(R_1 =r_0 =0.43\) m

Principal transverse radius of curvature of the wheel profile at the point of contact

\(R^{\prime }_1 =\infty \)

Principal rolling radius of the rail at the point of contact

\(R_2 =\infty \)

Principal transverse radius of curvature of the rail profile at the point of contact

\(R^{\prime }_2 =0.6\) m

Appendix B

Normal forces:

Assuming the equilibrium speed motion of wheelsets on the circular curved tracks (Fig. 2), the vertical components of normal force for each wheelset are calculated and expressed as

$$\begin{aligned} N_{Lzij}^*=N_{Rzij}^*=\frac{1}{2}\left( {W_\mathrm{ext} +m_w g+\frac{V^{2}W_\mathrm{ext} }{gR}\phi _{se} } \right) . \end{aligned}$$
(B1)

Speed-dependent and linear creep forces and creep moments:

Considering the various wheel conicities \(\lambda _{ij} \) and wheel rolling radii \(r_{ij} \) at wheel/rail contact surfaces after wheel turning, the linear creep forces and moments directly calculated via Kalker’s linear theory are calculated and expressed as

$$\begin{aligned} F_{Lxij}^*= & {} -\frac{f_{33,ij} }{V}\left[ {V\left( 1+\frac{a}{R}-\frac{r_{Lij} }{r_{ij} }\right) -a{\dot{\psi }}_{wij} } \right] , \end{aligned}$$
(B2a)
$$\begin{aligned} F_{Lyij}^*= & {} -\frac{f_{11,ij} }{V}({\dot{y}}_{wij} +r_{Lij} \dot{\phi }_{wij}-V\psi _{wij})\nonumber \\&-\frac{f_{12,ij} }{V}\left( \dot{\psi }_{wij} -\frac{V}{R}-\frac{V}{r_{ij} }\delta _{Lij}\right) , \end{aligned}$$
(B2b)
$$\begin{aligned} M_{Lzij}^*= & {} \frac{f_{12,ij} }{V}\left[ {{\dot{y}}_{wij} -V\psi _{wij} +r_{Lij} {\dot{\phi }}_{wij} } \right] \nonumber \\&-\frac{f_{22,ij} }{V}\left[ {{\dot{\psi }}_{wij} -\frac{V}{R}-\frac{V}{r_{ij} }\delta _{Lij} } \right] , \end{aligned}$$
(B2c)
$$\begin{aligned} F_{Rxij}^*= & {} -\frac{f_{33,ij} }{V}\left[ {V\left( 1-\frac{a}{R}-\frac{r_{Rij} }{r_{ij} }\right) +a{\dot{\psi }}_{wij} } \right] , \end{aligned}$$
(B3a)
$$\begin{aligned} F_{Ryij}^*= & {} -\frac{f_{11,ij} }{V}({\dot{y}}_{wij} +r_{Rij} \dot{\phi }_{wij} -V\psi _{wij} )\nonumber \\&-\frac{f_{12,ij} }{V}\left( \dot{\psi }_{wij} -\frac{V}{R}+\frac{V}{r_{ij} }\delta _{Rij}\right) , \end{aligned}$$
(B3b)
$$\begin{aligned} M_{Rzij}^*= & {} \frac{f_{12,ij} }{V}\left[ {{\dot{y}}_{wij} -V\psi _{wij} +r_{Rij} {\dot{\phi }}_{wij} } \right] \nonumber \\&-\frac{f_{22,ij} }{V}\left[ {{\dot{\psi }}_{wij} -\frac{V}{R}+\frac{V}{r_{ij} }\delta _{Rij} } \right] , \end{aligned}$$
(B3c)

where \(r_{Lij} =r_{ij} +\lambda _{ij} y_{wij} \), \(r_{Rij} =r_{ij} -\lambda _{ij} y_{wij} \), \(\delta _{Lij} =\delta _{Rij} =\lambda _{ij} \), \(\delta _{Lij} =\delta _{Rij} =\lambda _{ij} \).

Suspension forces and moments:

Wheelsets

$$\begin{aligned} F_{syij}= & {} -2K_{py} y_{wij} -(-1)^{j}2K_{py} L_1 \psi _{ti} +2K_{py} y_{ti} \nonumber \\&-2C_{py} {\dot{y}}_{wij} -(-1)^{j}2C_{py} L_2 {\dot{\psi }}_{ti} +2C_{py} {\dot{y}}_{ti} \nonumber \\&+2K_{py} h_T \phi _{ti} +2C_{py} h_T {\dot{\phi }}_{ti}, \end{aligned}$$
(B4)
$$\begin{aligned} M_{sxij}= & {} 2K_{pz} b_1^2 \phi _{ti} +2C_{pz} b_1^2 {\dot{\phi }}_{ti}\nonumber \\&-2b_1^2 K_{pz} \phi _{wij} -2b_1^2 C_{pz} {\dot{\phi }}_{wij} , \end{aligned}$$
(B5)
$$\begin{aligned} M_{szij}= & {} 2K_{px} b_1^2 \psi _{ti} +2C_{px} b_1^2 {\dot{\psi }}_{ti}\nonumber \\&-2K_{px} b_1^2 \psi _{wij} -2C_{px} b_1^2 {\dot{\psi }}_{wij} , \end{aligned}$$
(B6)
$$\begin{aligned} M_{exij}= & {} hW_\mathrm{ext} \left( {\frac{V^{2}}{gR}-\phi _{se} -\phi _{wij} } \right) . \end{aligned}$$
(B7)

Bogie frame

$$\begin{aligned} F_{syti}= & {} 2K_{py} y_{wi1} +2C_{py} {\dot{y}}_{wi1} +2K_{py} y_{wi2} +2C_{py} {\dot{y}}_{wi2} \nonumber \\&+(-4K_{py} -2K_{sy} )y_{ti} +(-4C_{py} -2C_{sy} ){\dot{y}}_{ti} \nonumber \\&+2\left( {-1} \right) ^{i}K_{sy} L_c \psi _c +2\left( {-1} \right) ^{i}C_{sy} L_c {\dot{\psi }}_c \nonumber \\&+2K_{sy} y_c +2C_{sy} \dot{y}_c \nonumber \\&+2K_{sy} \left( {h_c -h_T } \right) \phi _c +2C_{sy} \left( {h_c -h_T } \right) {\dot{\phi }}_c \nonumber \\&-4K_{py} h_T \phi _{ti} -4C_{py} h_T {\dot{\phi }}_{ti}, \end{aligned}$$
(B8)
$$\begin{aligned} F_{szti}= & {} 2K_{sz} z_c +2C_{sz} {\dot{z}}_c -2\left( {K_{sz} +2K_{pz} } \right) z_{ti} \nonumber \\&-2\left( {C_{sz} +2C_{pz} } \right) {\dot{z}}_{ti} \nonumber \\&+2K_{pz} z_{wi1} +2C_{pz} {\dot{z}}_{wi1} +2K_{pz} z_{wi2} +2C_{pz} {\dot{z}}_{wi2},\nonumber \\ \end{aligned}$$
(B9)
$$\begin{aligned} M_{sxti}= & {} 2K_{sz} b_2^2 \phi _c +2C_{sz} b_3^2 {\dot{\phi }}_c -2K_{sz} b_2^2 \phi _{ti} -2C_{sz} b_3^2 {\dot{\phi }}_{ti}\nonumber \\&+2K_{py} h_T y_{wi1} +2C_{py} h_T {\dot{y}}_{wi1} \nonumber \\&+2K_{py} h_T y_{wi2} +2C_{py} h_T {\dot{y}}_{wi2} \nonumber \\&-4K_{py} h_T y_{ti} -4C_{py} h_T {\dot{y}}_{ti} -4K_{py} h_T^2 \phi _{ti} \nonumber \\&-4C_{py} h_T^2 {\dot{\phi }}_{ti} -4K_{pz} b_1^2 \phi _{ti} -4C_{pz} b_1^2 {\dot{\phi }}_{ti} \nonumber \\&+2K_{pz} b_1^2 \phi _{wi1} +2C_{pz} b_1^2 {\dot{\phi }}_{wi1} \nonumber \\&+2K_{pz} b_1^2 \phi _{wi2} +2C_{pz} b_1^2 {\dot{\phi }}_{wi2}, \end{aligned}$$
(B10)
$$\begin{aligned} M_{szti}= & {} \left( -4K_{py} L_1^2 -4K_{px} b_1^2 -2K_{sx} b_2^2\right) \psi _{ti}\nonumber \\&+\left( -4C_{py} L_2^2 -4C_{px} b_1^2 -2C_{sx} b_3^2\right) {\dot{\psi }}_{ti} \nonumber \\&+2K_{py} L_1 y_{wi1} +2C_{py} L_2 {\dot{y}}_{wi1} \nonumber \\&+2K_{px} b_1^2 \psi _{wi1} +2C_{px} b_1^2 {\dot{\psi }}_{wi1} \nonumber \\&-2K_{py} L_1 y_{wi2} -2C_{py} L_2 {\dot{y}}_{wi2} \nonumber \\&+2K_{px} b_1^2 \psi _{wi2} +2C_{px} b_1^2 {\dot{\psi }}_{wi2} \nonumber \\&+2K_{sx} b_2^2 \psi _c +2C_{sx} b_3^2 {\dot{\psi }}_c. \end{aligned}$$
(B11)

Car body

$$\begin{aligned} F_{syc}= & {} -2K_{sy} (2y_c -y_{t1} -y_{t2} )-4K_{sy} \left( {h_c -h_T } \right) \phi _c \nonumber \\&-2C_{sy} (2{\dot{y}}_c -{\dot{y}}_{t1} -{\dot{y}}_{t2} )-4C_{sy} \left( {h_c -h_T } \right) {\dot{\phi }}_c ,\nonumber \\ \end{aligned}$$
(B12)
$$\begin{aligned} F_{szc}= & {} -4K_{sz} z_c -4C_{sz} {\dot{z}}_c +2K_{sz} z_{t1} \nonumber \\&+2C_{sz} {\dot{z}}_{t1} +2K_{sz} z_{t2} +2C_{sz} {\dot{z}}_{t2} , \end{aligned}$$
(B13)
$$\begin{aligned} M_{sxc}= & {} 2K_{sz} b_2^2 \phi _{t1} +2C_{sz} b_3^2 {\dot{\phi }}_{t1}\nonumber \\&+2K_{sz} b_2^2 \phi _{t2} +2C_{sz} b_3^2 {\dot{\phi }}_{t2} \nonumber \\&-4K_{sz} b_2^2 \phi _c -4C_{sz} b_3^2 {\dot{\phi }}_c \nonumber \\&-4K_{sy} \left( {h_c -h_T } \right) y_c -4C_{sy} \left( {h_c -h_T } \right) {\dot{y}}_c \nonumber \\&+2K_{sy} \left( {h_c -h_T } \right) y_{t1} \nonumber \\&+2C_{sy} \left( {h_c -h_T } \right) {\dot{y}}_{t1} +2K_{sy} \left( {h_c -h_T } \right) y_{t2} \nonumber \\&+2C_{sy} \left( {h_c -h_T } \right) {\dot{y}}_{t2} \nonumber \\&-4K_{sy} \left( {h_c -h_T } \right) ^{2}\phi _c -4C_{sy} \left( {h_c -h_T } \right) ^{2}{\dot{\phi }}_c , \end{aligned}$$
(B14)
$$\begin{aligned} M_{szc}= & {} -4K_{sy} \psi _c L_c^2 -4C_{sy} {\dot{\psi }}_c L_c^2\nonumber \\&-2K_{sx} b_2^2 (2\psi _c -\psi _{t1} -\psi _{t2} ) \nonumber \\&-2C_{sx} b_3^2 (2{\dot{\psi }}_c -{\dot{\psi }}_{t1} -\dot{\psi }_{t2} )\nonumber \\&-2K_{sy} L_c (-y_{t1} +y_{t2} )-2C_{sy} L_c (-{\dot{y}}_{t1} +{\dot{y}}_{t2} ).\nonumber \\ \end{aligned}$$
(B15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YC., Lee, CK. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii. Acta Mech. Sin. 33, 963–980 (2017). https://doi.org/10.1007/s10409-017-0658-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0658-7

Keywords

Navigation