Skip to main content
Log in

An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introducing a total unknown vector consisting of the displacement amplitude, rotation angle, shear force, and bending moment. The high-order governing differential equation of the vibration of SLGSs is transformed into a set of ordinary differential equations in symplectic space. Exact solutions for free vibration are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary conditions. Vibration modes are expressed in terms of the symplectic eigenfunctions. In the numerical examples, comparison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given. A parametric study of the natural frequency is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007). doi:10.1016/j.compscitech.2006.03.031

    Article  Google Scholar 

  2. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016). doi:10.1007/s10409-015-0508-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  4. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). doi:10.1063/1.332803

    Article  Google Scholar 

  5. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012). doi:10.1016/j.commatsci.2011.07.040

    Article  Google Scholar 

  6. Wang, C.Y., Murmu, T., Adhikari, S.: Mechanisms of nonlocal effect on the vibration of nanoplates. Appl. Phys. Lett. 98, 153101 (2011). doi:10.1063/1.3579249

    Article  Google Scholar 

  7. Sobhy, M.: Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium. Phys. E 56, 400–409 (2014). doi:10.1016/j.physe.2013.10.017

    Article  Google Scholar 

  8. Kitipornchai, S., He, X.Q., Liew, K.M.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443 (2005). doi:10.1103/PhysRevB.72.075443

    Article  Google Scholar 

  9. Karličić, D., Adhikari, S., Murmu, T., et al.: Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Compos. B Eng. 66, 328–339 (2014). doi:10.1016/j.compositesb.2014.05.029

    Article  Google Scholar 

  10. He, X.Q., Kitipornchai, S., Liew, K.M.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086 (2005). doi:10.1088/0957-4484/16/10/018

    Article  Google Scholar 

  11. Liew, K.M., He, X.Q., Kitipornchai, S.: Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 54, 4229–4236 (2006). doi:10.1016/j.actamat.2006.05.016

    Article  Google Scholar 

  12. Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17, 864 (2006). doi:10.1088/0957-4484/17/3/042

    Article  Google Scholar 

  13. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput. Mater. Sci. 50, 239–245 (2010). doi:10.1016/j.commatsci.2010.08.009

    Article  Google Scholar 

  14. Lu, P., Zhang, P.Q., Lee, H.P., et al.: Non-local elastic plate theories. Proc. R. Soc. Lond. A Math. Phys. Sci. 463, 3225–3240 (2007). doi:10.1098/rspa.2007.1903

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsiatas, G.C., Yiotis, A.J.: A BEM-based meshless solution to buckling and vibration problems of orthotropicplates. Anal. Bound. Elem. 37, 579–584 (2013). doi:10.1016/j.enganabound.2013.01.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Analooei, H.R., Azhari, M., Heidarpour, A.: Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method. Appl. Math. Model. 37, 6703–6717 (2013). doi:10.1016/j.apm.2013.01.051

    Article  MathSciNet  Google Scholar 

  17. Shen, H.S.: Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments. Compos. Struct. 93, 1143–1152 (2011). doi:10.1016/j.compstruct.2010.10.009

    Article  Google Scholar 

  18. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011). doi:10.1016/j.compstruct.2010.08.004

    Article  Google Scholar 

  19. Setoodeh, A.R., Malekzadeh, P., Vosoughi, A.R.: Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. P. I. Mech. Eng. C. J. Mech. Eng. Sci. 226, 1896–1906 (2012). doi:10.1177/0954406211428997

    Article  Google Scholar 

  20. Malekzadeh, P., Setoodeh, A.R., Alibeygi Beni, A.: Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos. Struct. 93, 1631–1639 (2011). doi:10.1016/j.compstruct.2011.01.008

    Article  Google Scholar 

  21. Shahidi, A.R., Anjomshoa, A., Shahidi, S.H., et al.: Fundamental size dependent natural frequencies of non-uniform orthotropic nano scaled plates using nonlocal variational principle and finite element method. Appl. Math. Model. 37, 7047–7061 (2013). doi:10.1016/j.apm.2013.02.015

    Article  MathSciNet  Google Scholar 

  22. Behfar, K., Naghdabadi, R.: Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos. Sci. Technol. 65, 1159–1164 (2005). doi:10.1016/j.compscitech.2004.11.011

    Article  Google Scholar 

  23. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E.: Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium. Compos. B Eng. 43, 3384–3390 (2012). doi:10.1016/j.compositesb.2012.01.046

    Article  Google Scholar 

  24. Pradhan, S.C., Phadikar, J.K.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373, 1062–1069 (2009). doi:10.1016/j.physleta.2009.01.030

    Article  MATH  Google Scholar 

  25. Karličić, D., Kozić, P., Pavlović, R.: Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos. Struct. 115, 89–99 (2014). doi:10.1016/j.compstruct.2014.04.002

    Article  Google Scholar 

  26. Pouresmaeeli, S., Ghavanloo, E., Fazelzadeh, S.A.: Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013). doi:10.1016/j.compstruct.2012.08.051

    Article  Google Scholar 

  27. Karličić, D., Cajić, M., Kozić, P., et al.: Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium. Compos. Struct. 131, 672–681 (2015). doi:10.1016/j.compstruct.2015.05.058

    Article  Google Scholar 

  28. Satish, N., Narendar, S., Gopalakrishnan, S.: Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Phys. E 44, 1950–1962 (2012). doi:10.1016/j.physe.2012.05.024

    Article  Google Scholar 

  29. Mohammadi, M., Moradi, A., Ghayour, M., et al.: Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. Lat. Am. J. Solids Struct. 11, 437–458 (2014). doi:10.1590/S1679-78252014000300005

    Article  Google Scholar 

  30. Mohammadi, M., Farajpour, A., Goodarzi, M., et al.: Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. J. Solid Mech. 5, 116–132 (2013)

    Google Scholar 

  31. Zhong, W.X.: A New Systematic Methodology for Theory of Elasticity. Publishing House of Dalian University of Technology Dalian, Dalian (1995). (in Chinese)

    Google Scholar 

  32. Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  33. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  34. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63, 050802 (2011). doi:10.1115/1.4003700

    Article  Google Scholar 

  35. Zhao, L., Chen, W.Q.: Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework. Compos. Struct. 92, 1753–1761 (2010). doi:10.1016/j.compstruct.2009.11.029

    Article  Google Scholar 

  36. Zhao, L., Chen, W.Q., Lü, C.F.: Symplectic elasticity for bi-directional functionally graded materials. Mech. Mater. 54, 32–42 (2012). doi:10.1016/j.mechmat.2012.06.001

    Article  Google Scholar 

  37. Zhou, Z., Xu, X., Leung, A.Y.T., et al.: Stress intensity factors and T-stress for an edge interface crack by symplectic expansion. Eng. Fract. Mech. 102, 334–347 (2013). doi:10.1016/j.engfracmech.2013.03.007

    Article  Google Scholar 

  38. Zhou, Z., Leung, A.Y.T., Xu, X., et al.: Mixed-mode thermal stress intensity factors from the finite element discretized symplectic method. Int. J. Solids Struct. 51, 3798–3806 (2014). doi:10.1016/j.ijsolstr.2014.07.016

    Article  Google Scholar 

  39. Li, R., Zhong, Y., Li, M.: Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method. Proc. R. Soc. Lond. Ser. A 469, 20120681 (2013). doi:10.1098/rspa.2012.0681

    Article  MathSciNet  Google Scholar 

  40. Li, R., Wang, B., Li, G., et al.: Analytic free vibration solutions of rectangular thin plates point-supported at a corner. Int. J. Mech. Sci. 96–97, 199–205 (2015). doi:10.1016/j.ijmecsci.2015.04.004

    Article  Google Scholar 

  41. Lim, C.W., Lü, C.F., Xiang, Y., et al.: On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int. J. Eng. Sci. 47, 131–140 (2009). doi:10.1016/j.ijengsci.2008.08.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Lim, C.W., Cui, S., Yao, W.A.: On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int. J. Solids Struct. 44, 5396–5411 (2007). doi:10.1016/j.ijsolstr.2007.01.007

  43. Sun, J., Xu, X., Lim, C.W.: Localization of dynamic buckling patterns of cylindrical shells under axial impact. Int. J. Mech. Sci. 66, 101–108 (2013). doi:10.1016/j.ijmecsci.2012.10.012

    Article  Google Scholar 

  44. Andrianarison, O., Benjeddou, A.: Hamiltonian partial mixed finite element-state space symplectic semi-analytical approach for the piezoelectric smart composites and FGM analysis. Acta Mech. 223, 1597–1610 (2012). doi:10.1007/s00707-012-0646-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarn, J.Q., Tseng, W.D.: Exact analysis of curved beams and arches with arbitrary end conditions: a Hamiltonian state space approach. J. Elast. 107, 39–63 (2012). doi:10.1007/s10659-011-9335-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, K., Deng, Z., Meng, J., et al.: Symplectic analysis of dynamic properties of hexagonal honeycomb sandwich tubes with plateau borders. J. Sound Vib. 351, 177–188 (2015). doi:10.1016/j.jsv.2015.04.012

    Article  Google Scholar 

  47. Li, R., Li, M., Su, Y., et al.: An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter. 9, 8476–8482 (2013). doi:10.1039/C3SM51476E

    Article  Google Scholar 

  48. Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010). doi:10.1016/j.physleta.2010.10.028

    Article  Google Scholar 

  49. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003). doi:10.1016/S0020-7225(02)00210-0

    Article  Google Scholar 

  50. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton (2003)

    Google Scholar 

  51. Chakraverty, S., Behera, L.: Free vibration of rectangular nanoplates using Rayleigh–Ritz method. Phys. E 56, 357–363 (2014). doi:10.1016/j.physe.2013.08.014

    Article  MATH  Google Scholar 

  52. Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009). doi:10.1016/j.jsv.2009.03.007

    Article  MATH  Google Scholar 

  53. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973). doi:10.1016/S0022-460X(73)80371-2

    Article  MATH  Google Scholar 

  54. Hemmasizadeh, A., Mahzoon, M., Hadi, E., et al.: A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films 516, 7636–7640 (2008). doi:10.1016/j.tsf.2008.05.040

    Article  Google Scholar 

  55. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006). doi:10.1103/PhysRevB.74.245413

    Article  Google Scholar 

  56. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). doi:10.1126/science.1157996

    Article  Google Scholar 

  57. Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003). doi:10.1016/S0020-7683(03)00056-8

    Article  MATH  Google Scholar 

  58. Wang, Q.: Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int. J. Solids Struct. 41, 5451–5461 (2004). doi:10.1016/j.ijsolstr.2004.05.002

    Article  MATH  Google Scholar 

  59. Shen, L., Shen, H.S., Zhang, C.L.: Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mater. Sci. 48, 680–685 (2010). doi:10.1016/j.commatsci.2010.03.006

    Article  Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (Grant 11672054), the Research Grant Council of Hong Kong (11215415), and the National Basic Research Program of China (973 Program) (Grant 2014CB046803) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Rong, D., Lim, C.W. et al. An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets. Acta Mech. Sin. 33, 912–925 (2017). https://doi.org/10.1007/s10409-017-0656-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0656-9

Keywords

Navigation