Skip to main content
Log in

A dynamic cellular vertex model of growing epithelial tissues

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guillot, C., Lecuit, T.: Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013)

    Article  Google Scholar 

  2. Bertet, C., Sulak, L., Lecuit, T.: Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004)

    Article  Google Scholar 

  3. Lubarsky, B., Krasnow, M.A.: Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003)

    Article  Google Scholar 

  4. Balois, T., Ben Amar, M.: Morphology of melanocytic lesions in situ. Sci. Rep. 4, 3622 (2014)

    Article  Google Scholar 

  5. Kuipers, D., Mehonic, A., Kajita, M., et al.: Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours. J. Cell Sci. 127, 1229–1241 (2014)

    Article  Google Scholar 

  6. Bi, D., Lopez, J., Schwarz, J., et al.: A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015)

    Article  Google Scholar 

  7. Park, J.A., Atia, L., Mitchel, J.A., et al.: Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci. 129, 3375–3383 (2016)

    Article  Google Scholar 

  8. Doxzen, K., Vedula, S.R.K., Leong, M.C., et al.: Guidance of collective cell migration by substrate geometry. Integr. Biol. 5, 1026–1035 (2013)

    Article  Google Scholar 

  9. Vedula, S.R.K., Leong, M.C., Lai, T.L., et al.: Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl. Acad. Sci. USA 109, 12974–12979 (2012)

    Article  Google Scholar 

  10. Xu, G.K., Liu, Y., Li, B.: How do changes at the cell level affect the mechanical properties of epithelial monolayers? Soft Matter 11, 8782–8788 (2015)

    Article  Google Scholar 

  11. Cox, B.N., Snead, M.L.: Cells as strain-cued automata. J. Mech. Phys. Solids 87, 177–226 (2016)

    Article  Google Scholar 

  12. Ranft, J., Basan, M., Elgeti, J., et al.: Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. USA 107, 20863–20868 (2010)

    Article  Google Scholar 

  13. Rossen, N.S., Tarp, J.M., Mathiesen, J., et al.: Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 7 (2014)

    Article  Google Scholar 

  14. Doostmohammadi, A., Thampi, S.P., Saw, T.B., et al.: Celebrating Soft Matter’s 10th Anniversary: cell division: a source of active stress in cellular monolayers. Soft Matter 11, 7328–7336 (2015)

    Article  Google Scholar 

  15. Xue, S.L., Li, B., Feng, X.Q., et al.: Biochemomechanical poroelastic theory of avascular tumor growth. J. Mech. Phys. Solids 94, 409–432 (2016)

    Article  MathSciNet  Google Scholar 

  16. Stylianopoulos, T., Martin, J.D., Chauhan, V.P., et al.: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012)

    Article  Google Scholar 

  17. Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA 102, 3318–3323 (2005)

    Article  Google Scholar 

  18. Szabó, A., Merks, R.M.: Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol. 3, 87 (2013)

    Article  Google Scholar 

  19. Fletcher, A.G., Osterfield, M., Baker, R.E., et al.: Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014)

    Article  Google Scholar 

  20. Farhadifar, R., Röper, J.C., Algouy, B., et al.: The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)

    Article  Google Scholar 

  21. Merzouki, A., Malaspinas, O., Chopard, B.: The mechanical properties of a cell-based numerical model of epithelium. Soft Matter 12, 4745–4754 (2016)

    Article  Google Scholar 

  22. Vincent, J.P., Fletcher, A.G., Baena-Lopez, L.A.: Mechanisms and mechanics of cell competition in epithelia. Nat. Rev. Mol. Cell Biol. 14, 581–591 (2013)

    Article  Google Scholar 

  23. Loza, A.J., Koride, S., Schimizzi, G.V., et al.: Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium. Mol. Biol. Cell 27, 3459–3470 (2016)

    Article  Google Scholar 

  24. Barton, D.L., Henkes, S., Weijer, C.J., et al.: Active vertex model for cell-resolution description of epithelial tissue mechanics. arXiv preprint, arXiv:1612.05960 (2016)

  25. Lin, S.Z., Li, B., Xu, G.K., et al.: Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. J. Biomech. 52, 140–147 (2017)

    Article  Google Scholar 

  26. Manning, M.L., Foty, R.A., Steinberg, M.S., et al.: Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl. Acad. Sci. USA 107, 12517–12522 (2010)

    Article  Google Scholar 

  27. Li, B., Sun, S.X.: Coherent motions in confluent cell monolayer sheets. Biophys. J. 107, 1532–1541 (2014)

    Article  Google Scholar 

  28. Forgacs, G., Foty, R.A., Shafrir, Y., et al.: Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998)

  29. Solon, J., Kaya-Copur, A., Colombelli, J., et al.: Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)

    Article  Google Scholar 

  30. Cadart, C., Zlotek-Zlotkiewicz, E., Le Berre, M., et al.: Exploring the function of cell shape and size during mitosis. Dev. Cell 29, 159–169 (2014)

    Article  Google Scholar 

  31. Anon, E., Serra-Picamal, X., Hersen, P., et al.: Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl. Acad. Sci. USA 109, 10891–10896 (2012)

    Article  Google Scholar 

  32. Ishihara, S., Sugimura, K.: Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012)

    Article  MATH  Google Scholar 

  33. Gibson, W.T., Veldhuis, J.H., Rubinstein, B., et al.: Control of the mitotic cleavage plane by local epithelial topology. Cell 144, 427–438 (2011)

    Article  Google Scholar 

  34. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008)

    Article  Google Scholar 

  35. Angelini, T.E., Hannezo, E., Trepat, X., et al.: Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Supports from the National Natural Science Foundation of China (Grants 11432008, 11542005, 11672161, and 11620101001), Tsinghua University (Grant 20151080441), and the Thousand Young Talents Program of China are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SZ., Li, B. & Feng, XQ. A dynamic cellular vertex model of growing epithelial tissues. Acta Mech. Sin. 33, 250–259 (2017). https://doi.org/10.1007/s10409-017-0654-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0654-y

Keywords

Navigation