Skip to main content
Log in

The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet. The Wang and Rusak (Phys. Fluids 8:1007–1016, 1996. doi:10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant, three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al. (J. Fluid Mech. 797: 284–321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. The energy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarpkaya, T.: On stationary and traveling vortex breakdowns. J. Fluid Mech. 45, 545–559 (1971). doi:10.1017/S0022112071000181

    Article  Google Scholar 

  2. Sarpkaya, T.: Effect of the adverse pressure gradient on vortex breakdown. AIAA J. 12, 602–607 (1974). doi:10.2514/3.49305

    Article  Google Scholar 

  3. Faler, J.H., Leibovich, S.: Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 1385–1400 (1977). doi:10.1063/1.862033

    Article  Google Scholar 

  4. Garg, A.K., Leibovich, S.: Spectral characteristics of vortex breakdown flowfields. Phys. Fluids 22, 2053–2064 (1979). doi:10.1063/1.862514

    Article  Google Scholar 

  5. Leibovich, S.: Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192–1206 (1984). doi:10.2514/3.8761

    Article  Google Scholar 

  6. Brucker, Ch., Althaus, W.: Study of vortex breakdown by particle tracking velocimetry (PTV). Part 3: time-dependent structure and development of breakdown modes. Exp. Fluids 18, 174–186 (1995). doi:10.1007/BF00230262

    Article  Google Scholar 

  7. Mattner, T.W., Joubert, P.N., Chong, M.S.: Vortical flow. Part 1. Flow through a constant-diameter pipe. J. Fluid Mech. 463, 259–291 (2002). doi:10.1017/S0022112002008741

    Article  MathSciNet  MATH  Google Scholar 

  8. Liang, H.Z., Maxworthy, T.: An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005). doi:10.1017/S0022112004002629

    Article  MATH  Google Scholar 

  9. Umeh, C., Rusak, Z., Gutmark, E., et al.: Experimental and computational study of nonreacting vortex breakdown in a swirl-stabilized combustor. AIAA J. 48, 2576–2585 (2010). doi:10.2514/1.J050393

    Article  Google Scholar 

  10. Rusak, Z., Wasserstrom, E., Seginer, A.: Numerical calculation of nonlinear aerodynamics of wing-body configurations. AIAA J. 21, 929–936 (1983). doi:10.2514/3.8179

    Article  MATH  Google Scholar 

  11. Er-El, J., Seginer, A.: Vortex trajectories and breakdown on wing-canard configurations. J. Aircr. 22, 641–648 (1985). doi:10.2514/3.45180

    Article  Google Scholar 

  12. Rusak, Z.: Review of recent studies on the axisymmetric vortex breakdown phenomenon. In: Fluids 2000 Conference and Exhibit, Denver, Colorado, AIAA-2000–2529 (2000)

  13. Benjamin, T.B.: Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593–629 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Randall, J.D., Leibovich, S.: The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 58, 495–515 (1973)

    Article  MATH  Google Scholar 

  15. Keller, J.J., Egli, W., Exley, W.: Force- and loss- free transitions between flow states. Z. Angrew. Math. Phys. 36, 854–889 (1985). doi:10.1007/BF00944899

    Article  MathSciNet  MATH  Google Scholar 

  16. Leibovich, S., Kribus, A.: Large amplitude wavetrains and solitary waves in vortices. J. Fluid Mech. 216, 459–504 (1990). doi:10.1017/S0022112090000507

    Article  MATH  Google Scholar 

  17. Kelvin, L.: Vibrations of a columnar vortex. Phil. Mag. 10, 155–168 (1880)

    Article  MATH  Google Scholar 

  18. Rayleigh, L.: On the dynamics of revolving fluids. Proc. R. Soc. Lond. Ser. A 93, 148–154 (1917)

    Article  MATH  Google Scholar 

  19. Synge, J.L.: The stability of heterogeneous liquids. Trans. R. Soc. Can. 27, 1–18 (1933)

    MATH  Google Scholar 

  20. Howard, L.N., Gupta, A.S.: On the hydrodynamics and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463–476 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lessen, H., Singh, P.J., Paillet, F.: The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753–763 (1974)

    Article  MATH  Google Scholar 

  22. Leibovich, S., Stewartson, K.: A sufficeint condition for the instability of columnar vortices. J. Fluid Mech. 126, 335–356 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ash, R.L., Khorrami, M.R.: Vortex Stability. Chapter 8 in: Fluid Vortices. Klumer Academic Publishes, Netherlands, 317–372 (1995)

  24. Wang, S.X., Rusak, Z.: On the stability of an axisymmetric rotating flow in a pipe. Phys. Fluids 8, 1007–1016 (1996). doi:10.1063/1.86882

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, S.X., Rusak, Z.: The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech. 340, 177–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, S.X., Rusak, Z.: Energy transfer mechanism of the instability of an axisymmetric swirling flow in a finite-length pipe. J. Fluid Mech. 679, 505–543 (2011). doi:10.1017/jfm.2011.143

  27. Rusak, Z., Wang, S.X., Xu, L., et al.: On the global nonlinear stability of near-critical swirling flows in a long finite-length pipe and the path to vortex breakdown. J. Fluid Mech. 712, 295–326 (2012). doi:10.1017/jfm.2012.420

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, S.X., Rusak, Z., Gong, R., et al.: On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe. J. Fluid Mech. 797, 284–321 (2016)

    Article  MathSciNet  Google Scholar 

  29. Salvetti, M.V., Orlandi, P., Verzicco, R.: Numerical simulations of transitional axisymmetric coaxial jets. AIAA J. 34, 736–743 (1996). doi:10.2514/3.13134

    Article  Google Scholar 

  30. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruith, M.R., Chen, P., Meiburg, E., et al.: Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, G.W., Rubinstein, R.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)

    Article  MATH  Google Scholar 

  33. Yang, Y., He, G.W., Wang, L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large eddy simulation. J. Turbul. 9, 1–24 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Jin, G.D., He, G.W., Wang, L.P.: Large-eddy simulation of turbulent-collision of heavy particles in isotropic turbulence. Phys. Fluids 22, 055106 (2010)

    Article  MATH  Google Scholar 

  35. Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)

    Article  Google Scholar 

  36. Feng, C., Liu, F., Rusak, Z., et al.: On the three-dimensional dynamics of a perturbed solid-body rotation flow in a finite-length pipe. J. Northwest. Polytech. Univ. 33, 211–222 (2015)

    Google Scholar 

  37. Rusak, Z., Wang, S.X.: Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe. J. Fluid Mech. 759, 321–359 (2014)

    Article  MATH  Google Scholar 

  38. Rusak, Z., Wang, S.X.: Review of theoretical approaches to the vortex breakdown phenomenon. In: AIAA 1st Theoretical Fluid Mechanics Meeting, New Orleans, LA, AIAA-1996-2126 (1996)

  39. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

Download references

Acknowledgements

The project was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant 11601411) and the Scientific Research Program Funded by Shannxi Provincial Education Department (Grant 15JK1313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjuan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Liu, F., Rusak, Z. et al. The energy transfer mechanism of a perturbed solid-body rotation flow in a rotating pipe. Acta Mech. Sin. 33, 274–283 (2017). https://doi.org/10.1007/s10409-017-0642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0642-2

Keywords

Navigation