Skip to main content
Log in

Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer–metal composite (IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples with Pt and Ag electrodes were manufactured, and the large nonlinear deformation and the effect of curvature on surface electrode resistance of the IPMC samples were investigated experimentally and theoretically. A distributed electrical model was modified for calculating the distribution of voltage along the bending actuator. Then an irreversible thermodynamic model that could predict the curvature of a unit part of an IPMC actuator is combined with the electrical model so that an analytical electromechanical model is developed. The electromechanical model is then validated against the experimental results obtained from Pt- and Ag-IPMC actuators under various excitation voltages. The good agreement between the electromechanical model and the actuators shows that the analytical electromechanical model can accurately describe the large nonlinear quasi-static deflection behavior of IPMC actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., et al.: Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review. Smart Mater. Struct. 7, R15–R30 (1998)

    Article  Google Scholar 

  2. Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001)

    Article  Google Scholar 

  3. Kim, K.J., Shahinppor, M.: Ionic polymer–metal composites:II. Manufacturing technique. Smart Mater. Struct. 12, 65–79 (2003)

    Article  Google Scholar 

  4. Akle, B.J., Bennett, M.D., Leo, D.J., et al.: Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. J. Mater. Sci. 40, 7031–7041 (2007)

    Article  Google Scholar 

  5. Bian, K., Xiong, K., Liu, G., et al.: Preparation and dynamic displacement testing of ionic polymer metal composites with platinum as electrodes. Acta Mater. Compos. Sin. 28, 115–120 (2011)

    Google Scholar 

  6. De-Gennes, P.G., Okumura, K., Shahinpoor, M., et al.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50, 513–518 (2000)

    Article  Google Scholar 

  7. Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer–metal composites. J. Appl. Phys. 92, 3321–3331 (2000)

    Article  Google Scholar 

  8. Nemat-Nasser, S.: Micro-mechanics of actuation of ionic polymer–metal composites. J. Appl. Phys. 90, 2899–2915 (2002)

    Article  Google Scholar 

  9. Shahinpoor, M., Kim, K.J.: Mass transfer induced hydraulic actuation in ionic polymer–metal composites. J. Intell. Mater. Syst. Struct. 13, 369–376 (2002)

    Article  Google Scholar 

  10. Tamagawa, H., Goto, S., Sugiyama, T.: Bending direction of Ag-plated IPMC containing immobile anions and/or cations. Compos. Sci. Technol. 68, 3412–3417 (2008)

    Article  Google Scholar 

  11. Bar-Cohen, Y.: Electroactive polymer (EAP) actuator as artificial muscle: reality, potential, and challenges. SPIE Press, Bellinghan (2004)

    Book  Google Scholar 

  12. Moeinkhah, H., Rezaeepazhand, J., Akbarzadeh, A.: Analytical dynamic modeling of a cantilever IPMC actuator based on a distributed electrical circuit. Smart Mater. Struct. 22, 055033 (2013)

    Article  Google Scholar 

  13. Luca, V.D., Digiamberardino, P., Pasquale, G.D., et al.: Ionic electroactive polymer metal composites: fabricating, modeling, and applications of postsilicon smart devices. J. Polym. Sci. Pol. Phys. 51, 699–734 (2013)

    Article  Google Scholar 

  14. Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005)

    Article  Google Scholar 

  15. Colozza, A.: Fly like a bird. IEEE Spectrum. 44, 38–43 (2007)

    Article  Google Scholar 

  16. Jain, R.K., Datta, S., Majumder, S.: Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics 23, 381–394 (2013)

  17. Jain, R.K., Majumder, S., Dutta, A.: SCARA based peg-in-hole assembly using compliant IPMC based micro gripper. Robot. Auton. Syst. 61, 297–311 (2013)

  18. Aurelil, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE-ASME. Trans. Mech. 15, 603–614 (2010)

    Article  Google Scholar 

  19. Najem, J., Sarles, S., Akle, B., et al.: Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater. Struct. 21, 094026 (2012)

    Article  Google Scholar 

  20. Abdelnour, K., Stinchcombe, A., Porfiri, M.: Wrieless powering of ionic polymer metal composites toward hovering microswimmers. IEEE-ASME. Trans. Mech. 17, 924–934 (2012)

    Article  Google Scholar 

  21. Moghadam, A.A.A., Kouzani, A., Shanippor, M., et al.: Development of a novel soft parallel robot equipped with polymeric artificial muscles. Smart Mater. Struct. 24, 035017 (2015)

    Article  Google Scholar 

  22. Aw, K.C., McDaid, A.J.: Bio-applications of ionic polymer metal composite transducers. Smart Mater. Struct. 23, 074005 (2014)

    Article  Google Scholar 

  23. Kanno, R., Tadokoro, S., Takamori, T., et al.: Modeling of ICPF actuator, modeling of electrical characteristics. Proc. IEEE Int. Conf. Ind. Electron. Control Instrum. 2, 913–918 (1995)

  24. Annabestani, M., Naghavi, N.: Nonlinear identification of IPMC actuators based on ANFIS–NARX paradigm. Sens. Actuators A Phys. 209, 140–148 (2014)

    Article  Google Scholar 

  25. Truong, D.Q., Ahn, K.K.: Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained nueral network. Smart Mater. Struct. 23, 074008 (2014)

    Article  Google Scholar 

  26. Bonomo, C., Fortuna, L., Giannone, P., et al.: A nonlinear model for ionic polymer metal composites as actuators. Smart Mater. Struct. 16, 1–12 (2007)

    Article  Google Scholar 

  27. Vahabi, M., Mehdizadeh, E., Kabganian, M.: Experimental identification of IPMC actuator parameters through incorporation of linear and nonlinear least squares methods. Sens. Actuators A Phys. 168, 140–148 (2011)

    Article  Google Scholar 

  28. Liu, Y., Zhao, R., Ghaffari, M.: Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sens. Actuators A Phys. 181, 70–76 (2012)

  29. Caponetto, R., Graziani, S., Pappalardo, F.: Identification of IPMC nonlinear model via single and muti-objective optimization algorithms. ISA. Trans. 53, 481–488 (2014)

    Article  Google Scholar 

  30. Porfiri, M.: An electromechanical model for sensing and actuation of ionic polymer metal composite. Smart Mater. Struct. 18, 015016 (2009)

    Article  Google Scholar 

  31. Sun, A.B., Bajon, D., Moschetta, J.M.: Integrated static and dynamic modeling of an ionic polymer–metal composite actuator. J. Intell. Mater. Syst. Struct. 26, 1164–1178 (2015)

    Article  Google Scholar 

  32. Kothera, C.S., Leo, D.J.: Identification of the nonlinear response of ionic polymer actuators using the Volterra series. J. Vib. Control 11, 519–541 (2005)

    Article  MATH  Google Scholar 

  33. Anto, M., Aabloo, A., Punning, A., et al.: A mechanical model of a non-uniform ionomeric polymer metal composite actuator. Smart Mater. Struct. 17, 025004 (2008)

    Article  Google Scholar 

  34. Alici, G.: An effective modelling approach to estimate nonlinear bending behavior of cantilever type conducting polymer actuators. Sens. Actuators B Chem. 141, 284–292 (2009)

    Article  Google Scholar 

  35. Nam, D.N.C., Ahn, K.K.: Identification of an ionic polymer composite actuator employing Preisach type fuzzy NARX model and particle swarm optimization. Sens. Actuators A Phys. 183, 105–114 (2012)

    Article  Google Scholar 

  36. Annabestani, M., Naghavi, N.: Non-uniformation and curvature identification of ionic polymer metal composite actuators. J. Intell. Mater. Syst. Struct. 26, 582–598 (2015)

    Article  Google Scholar 

  37. Punning, A., Vunder, V., Must, I., et al.: In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators. J. Intell. Mater. Syst. Struct. 27, 1061–1074 (2016)

    Article  Google Scholar 

  38. Zhu, J., Xie, H., Li, Y., et al.: Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method. Exp. Mech. 54, 127–136 (2014)

    Article  Google Scholar 

  39. Kanno, R., Tadokoro, S., Takamori, T., et al.: Linear approximate dynamic model of ICPF actuator. In: Proc. IEEE Int. Conf. Robot. Autom. 1, 219–225 (1996)

  40. Punning, A., Johanson, U., Anton, M., et al.: A distributed model of ionomeric polymer metal composite. J. Intell. Mater. Syst. Struct. 20, 1711–1723 (2009)

    Article  Google Scholar 

  41. Bian, K., Xiong, K., Chen, Q., et al.: Manufacture and actuating characteristic of ionic polymer metal composites with silver electrodes. Chin. J. Mater. Res. 24, 520–524 (2010)

    Google Scholar 

  42. Punning, A., Kruusmaa, M., Aabioo, A.: Surface resistance experiments with IPMC sensor and actuators. Sens. Actuators A Phys. 133, 200–209 (2007)

    Article  Google Scholar 

  43. Branco, P.J.C., Dente, J.A.: Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics. Smart Mater. Struct. 15, 378–392 (2006)

    Article  Google Scholar 

  44. Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11372132, 11502109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xiong, K., Bian, K. et al. Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators. Acta Mech. Sin. 33, 382–393 (2017). https://doi.org/10.1007/s10409-016-0631-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0631-x

Keywords

Navigation