Skip to main content
Log in

Rotating electroosmotic flow of an Eyring fluid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A perturbation analysis is presented in this paper for the electroosmotic (EO) flow of an Eyring fluid through a wide rectangular microchannel that rotates about an axis perpendicular to its own. Mildly shear-thinning rheology is assumed such that at the leading order the problem reduces to that of Newtonian EO flow in a rotating channel, while the shear thinning effect shows up in a higher-order problem. Using the relaxation time as the small ordering parameter, analytical solutions are deduced for the leading- as well as first-order problems in terms of the dimensionless Debye and rotation parameters. The velocity profiles of the Ekman–electric double layer (EDL) layer, which is the boundary layer that arises when the Ekman layer and the EDL are comparably thin, are also deduced for an Eyring fluid. It is shown that the present perturbation model can yield results that are close to the exact solutions even when the ordering parameter is as large as order unity. By this order of the relaxation time parameter, the enhancing effect on the rotating EO flow due to shear-thinning Eyring rheology can be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, C., Yang, C.: Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201–202, 94–108 (2013)

    Article  Google Scholar 

  2. Chakraborty, S.: Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal. Chim. Acta 605, 175–184 (2007)

    Article  Google Scholar 

  3. Zhao, C., Zholkovskij, E., Masliyah, et al.: Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J. Colloid Interface Sci. 326, 503–510 (2008)

    Article  Google Scholar 

  4. Zhao, C., Yang, C.: Nonlinear Smoluchowski velocity for electroosmosis of power-law fluids over a surface with arbitrary zeta potentials. Electrophoresis 31, 973–979 (2010)

    Article  Google Scholar 

  5. Zhao, C., Yang, C.: An exact solution for electroosmosis of non-Newtonian fluids in microchannels. J. Non-Newton. Fluid Mech. 166, 1076–1079 (2011)

    Article  MATH  Google Scholar 

  6. Babaie, A., Sadeghi, A., Saidi, M.H.: Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel. J. Non-Newton. Fluid Mech. 166, 792–798 (2011)

    Article  MATH  Google Scholar 

  7. Deng, S.Y., Jian, Y.J., Bi, Y.H., et al.: Unsteady electroosmotic flow of power-law fluid in a rectangular microchannel. Mech. Res. Commun. 39, 9–14 (2012)

    Article  MATH  Google Scholar 

  8. Dhar, J., Ghosh, U., Chakraborty, S.: Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions. Electrophoresis 35, 662–669 (2014)

    Article  Google Scholar 

  9. Ng, C.O., Qi, C.: Electroosmotic flow of a power-law fluid in a non-uniform microchannel. J. Non-Newton. Fluid Mech. 208–209, 118–125 (2014)

    Article  Google Scholar 

  10. Dhinakaran, S., Afonso, A.M., Alves, M.A., et al.: Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model. J. Colloid Interface Sci. 344, 513–520 (2010)

    Article  Google Scholar 

  11. Sadeghi, A., Saidi, M.H., Mozafari, A.A.: Heat transfer due to electroosmotic flow of viscoelastic fluids in a slit microchannel. Int. J. Heat Mass Transf. 54, 4069–4077 (2011)

    Article  MATH  Google Scholar 

  12. Abhimanyu, P., Kaushik, P., Mondal, P.K., et al.: Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electric double layer phenomena. J. Non-Newton. Fluid Mech. 231, 56–67 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ng, C.O.: Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel. J. Non-Newton. Fluid Mech. 198, 1–9 (2013)

    Article  Google Scholar 

  14. Ng, C.O., Qi, C.: Electroosmotic flow of a viscoplastic material through a slit channel with walls of arbitrary zeta potential. Phys. Fluids 25, 103102 (2013)

    Article  Google Scholar 

  15. Berli, C.L.A., Olivares, M.L.: Electrokinetic flow of non-Newtonian fluids in microchannels. J. Colloid Interface Sci. 320, 582–589 (2008)

    Article  Google Scholar 

  16. Goswami, P., Mondal, P.K., Dutta, S., et al.: Electroosmosis of Powell–Eyring fluids under interfacial slip. Electrophoresis 36, 703–711 (2015)

    Article  Google Scholar 

  17. Duffy, D.C., Gillis, H.L., Lin, J., et al.: Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal. Chem. 71, 4669–4678 (1999)

    Article  Google Scholar 

  18. Gorkin, R., Park, J., Siegrist, J., et al.: Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758–1773 (2010)

    Article  Google Scholar 

  19. Ducrée, J., Haeberle, S., Lutz, S., et al.: The centrifugal microfluidic Bio-Disk platform. J. Micromech. Microeng. 17, S103–S115 (2007)

    Article  Google Scholar 

  20. Grumann, M., Geipel, A., Riegger, L., et al.: Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5, 560–565 (2005)

    Article  Google Scholar 

  21. Madou, M., Zoval, J., Jia, G., et al.: Lab on a CD. Annu. Rev. Biomed. Eng. 8, 601–628 (2006)

    Article  Google Scholar 

  22. Noroozi, Z., Kido, H., Micic, M., et al.: Reciprocating flow-based centrifugal microfluidics mixer. Rev. Sci. Instrum. 80, 075102 (2009)

    Article  Google Scholar 

  23. Chakraborty, D., Madou, M., Chakraborty, S.: Anomalous mixing behaviour in rotationally actuated microfluidic devices. Lab Chip 11, 2823–2826 (2011)

    Article  Google Scholar 

  24. Brenner, T., Glatzel, T., Zengerle, R., et al.: Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5, 146–150 (2004)

    Article  Google Scholar 

  25. Kim, J., Kido, H., Rangel, R.H., et al.: Passive flow switching valves on a centrifugal microfluidic platform. Sens. Actuators B Chem. 128, 613–621 (2008)

    Article  Google Scholar 

  26. Wang, G.J., Hsu, W.H., Chang, Y.Z., et al.: Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation. Biomed. Microdevices 6, 47–53 (2004)

    Article  Google Scholar 

  27. Soong, C.Y., Wang, S.H.: Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk systems. J. Colloid Interface Sci. 269, 484–498 (2004)

    Article  Google Scholar 

  28. Boettcher, M., Jaeger, M., Riegger, L., et al.: Lab-on-chip-based cell separation by combining dielectrophoresis and centrifugation. Biophys. Rev. Lett. 1, 443–451 (2006)

    Article  Google Scholar 

  29. Martinez-Duarte, R., Gorkin, R.A., Abi-Samrab, K., et al.: The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10, 1030–1043 (2010)

    Article  Google Scholar 

  30. Chang, C.C., Wang, C.Y.: Rotating electro-osmotic flow over a plate or between two plates. Phys. Rev. E 84, 056320 (2011)

    Article  Google Scholar 

  31. Xie, Z.Y., Jian, Y.J.: Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf. A Physicochem. Eng. Asp. 461, 231–239 (2014)

    Article  Google Scholar 

  32. Li, S.X., Jian, Y.J., Xie, Z.Y., et al.: Rotating electro-osmotic flow of third grade fluids between two microparallel plates. Colloids Surf. A Physicochem. Eng. Asp. 470, 240–247 (2015)

    Article  Google Scholar 

  33. Ng, C.O., Qi, C.: Electro-osmotic flow in a rotating rectangular microchannel. Proc. R. Soc. A 471, 20150200 (2015)

    Article  MathSciNet  Google Scholar 

  34. Powell, R.E., Eyring, H.J.: Mechanisms for the relaxation theory of viscosity. Nature 154, 427–428 (1944)

    Article  Google Scholar 

  35. Qi, C., Ng, C.O.: Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids Surf. A Physicochem. Eng. Asp. 513, 355–366 (2017). doi:10.1016/j.colsurfa.2016.10.066

    Article  Google Scholar 

  36. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  37. Chakraborty, S.: Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements. Phys. Rev. Lett. 100, 097801 (2008)

    Article  Google Scholar 

  38. Ng, C.O., Chu, H.C.W.: Electrokinetic flows through a parallel-plate channel with slipping stripes on walls. Phys. Fluids 23, 102002 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the reviewers for their comments, which have helped to improve the manuscript to its present form. The work was financially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through General Research Fund Project HKU 715510E and 17206615, and the University of Hong Kong through the Small Project Funding Scheme under Project Code 201309176109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-On Ng.

Appendix

Appendix

This Appendix contains the lengthy expressions for functions or parameters introduced in Sects. 4 and 5. In Eqs. (58) and (59), the four functions are given by

$$\begin{aligned} U_{\kappa }({\hat{z}})= & {} \frac{{\hat{\kappa }}^2\eta ^2C_1C_2}{3({\hat{\kappa }}^4+4\eta ^4)} {{\mathrm{sech}}}({\hat{\kappa }})\cosh ({\hat{\kappa }} {\hat{z}})\nonumber \\&+\,{{\mathrm{sech}}}^3({\hat{\kappa }}) \cosh ({\hat{\kappa }} {\hat{z}}) [U_1 \sinh ^2({\hat{\kappa }} {\hat{z}})+U_2\cosh ^2({\hat{\kappa }} z)]\nonumber \\&+\,{{\mathrm{sech}}}^2({\hat{\kappa }})\cosh (2 {\hat{\kappa }} {\hat{z}}) [U_3\sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})\nonumber \\&+\,U_6 \cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}})]\nonumber \\&+\,{{\mathrm{sech}}}^2({\hat{\kappa }})\sinh (2 {\hat{\kappa }} {\hat{z}})[U_4\sin (\eta {\hat{z}})\cosh (\eta {\hat{z}})\nonumber \\&+\,U_5\cos (\eta {\hat{z}}) \sinh (\eta {\hat{z}})]\nonumber \\&+\,{{\mathrm{sech}}}({\hat{\kappa }})\cosh ({\hat{\kappa }} {\hat{z}}) [U_7 \sin (2 \eta {\hat{z}})\sinh (2 \eta {\hat{z}})\nonumber \\&+\,U_{10}\cos (2 \eta {\hat{z}})\cosh (2\eta {\hat{z}})]\nonumber \\&+\,{{\mathrm{sech}}}({\hat{\kappa }})\sinh ({\hat{\kappa }} {\hat{z}}) [U_8\sin (2 \eta {\hat{z}})\cosh (2 \eta {\hat{z}})\nonumber \\&+\, U_9\cos (2\eta {\hat{z}}) \sinh (2 \eta {\hat{z}})]\nonumber \\&+\,U_{11}{{\mathrm{sech}}}({\hat{\kappa }}) \sin (2 \eta {\hat{z}}) \sinh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\,U_{12}{{\mathrm{sech}}}({\hat{\kappa }}) \cos (2\eta {\hat{z}}) \cosh ({\hat{\kappa }} {\hat{z}})\nonumber \\&+\,U_{13}{{\mathrm{sech}}}({\hat{\kappa }}) \sinh (2\eta {\hat{z}})\sinh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\,U_{14}{{\mathrm{sech}}}({\hat{\kappa }}) \cosh (2\eta {\hat{z}})\cosh ({\hat{\kappa }}{\hat{z}}), \end{aligned}$$
(A1)
$$\begin{aligned} U_{\eta }({\hat{z}})= & {} \sin (\eta {\hat{z}})\sin (2\eta {\hat{z}}) [U_{15}\sinh (2\eta {\hat{z}}) \sinh (\eta {\hat{z}})\nonumber \\&+\,U_{16}\cosh (2\eta {\hat{z}})\cosh (\eta {\hat{z}})] \nonumber \\&+\,\sin (\eta {\hat{z}})\cos (2\eta {\hat{z}}) [U_{17}\cosh (2\eta {\hat{z}})\sinh (\eta {\hat{z}})\nonumber \\&+\,U_{18}\sinh (2\eta {\hat{z}})\cosh (\eta {\hat{z}})]\nonumber \\&+\, \cos (\eta {\hat{z}})\sinh (\eta {\hat{z}}) [U_{19}\sin (2\eta {\hat{z}})\cosh (2\eta {\hat{z}})\nonumber \\&+\,U_{20}\cos (2\eta {\hat{z}}) \sinh (2\eta {\hat{z}})]\nonumber \\&+\,U_{21}\sin (\eta {\hat{z}}) \sin (2\eta {\hat{z}}) \cosh (\eta {\hat{z}})\nonumber \\&+\,U_{22}\sin (\eta {\hat{z}})\cos (2\eta {\hat{z}})\sinh (\eta {\hat{z}})\nonumber \\&+\,U_{23}\sin (\eta {\hat{z}})\sinh (\eta {\hat{z}}) \cosh (2\eta {\hat{z}})\nonumber \\&+\,U_{24}\cos (\eta {\hat{z}}) \sinh (\eta {\hat{z}}) \sinh (2\eta {\hat{z}}),\end{aligned}$$
(A2)
$$\begin{aligned} V_\kappa ({\hat{z}})= & {} \frac{{\hat{\kappa }}^2\eta ^2( C_1^2-C_2^2)}{6({\hat{\kappa }}^4+4\eta ^4)} {{\mathrm{sech}}}({\hat{\kappa }})\cosh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\,\frac{{\hat{\kappa }}^4{{\mathrm{sech}}}^2({\hat{\kappa }})}{6({\hat{\kappa }}^4+4\eta ^4)} [C_2\cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}})\nonumber \\&-\,C_1 \sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})] \nonumber \\&+\,V_1 {{\mathrm{sech}}}^3({\hat{\kappa }})\cosh ({\hat{\kappa }} {\hat{z}}) \sinh ^2({\hat{\kappa }} {\hat{z}})\nonumber \\&+\,V_2{{\mathrm{sech}}}^3({\hat{\kappa }})\cosh ^3({\hat{\kappa }} z)\nonumber \\&+\,V_3{{\mathrm{sech}}}^2({\hat{\kappa }}) \sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})\nonumber \\&+\,V_4 {{\mathrm{sech}}}^2({\hat{\kappa }}) \cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}})\nonumber \\&+\,{{\mathrm{sech}}}^2({\hat{\kappa }})\cosh (2 {\hat{\kappa }}{\hat{z}}) [V_5 \sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})\nonumber \\&+\,V_8 \cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}}) ] \nonumber \\&+\, {{\mathrm{sech}}}^2({\hat{\kappa }})\sinh (2 {\hat{\kappa }} {\hat{z}}) [V_6\sin (\eta {\hat{z}})\cosh (\eta {\hat{z}})\nonumber \\&+\, V_7\cos (\eta {\hat{z}}) \sinh (\eta {\hat{z}})]\nonumber \\&+\,V_9{{\mathrm{sech}}}({\hat{\kappa }}) \sin (2 \eta {\hat{z}}) \sinh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\,V_{10} {{\mathrm{sech}}}({\hat{\kappa }})\cos (2 \eta {\hat{z}}) \cosh ({\hat{\kappa }} {\hat{z}})\nonumber \\&+\,V_{11}{{\mathrm{sech}}}({\hat{\kappa }}) \sinh (2 \eta {\hat{z}}) \sinh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\,V_{12} {{\mathrm{sech}}}({\hat{\kappa }})\cosh (2\eta {\hat{z}})\cosh ({\hat{\kappa }}{\hat{z}})\nonumber \\&+\, {{\mathrm{sech}}}({\hat{\kappa }})\cosh ({\hat{\kappa }}{\hat{z}}) [V_{13}\sin (2\eta {\hat{z}}) \sinh (2\eta {\hat{z}})\nonumber \\&+\,V_{16} \cos (2\eta {\hat{z}})\cosh (2\eta {\hat{z}}) ]\nonumber \\&+\, {{\mathrm{sech}}}({\hat{\kappa }})\sinh ({\hat{\kappa }}{\hat{z}}) [V_{14}\sin (2 \eta {\hat{z}})\cosh (2\eta {\hat{z}})\nonumber \\&+\, V_{15}\cos (2\eta {\hat{z}}) \sinh (2\eta {\hat{z}})],\end{aligned}$$
(A3)
$$\begin{aligned} V_\eta ({\hat{z}})= & {} -\frac{5}{12} (C_1^2+C_2^2) [C_1\cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}})\nonumber \\&-\,C_2\sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})]\nonumber \\&+\,V_{17} \sin (\eta {\hat{z}}) \sin (2\eta {\hat{z}})\cosh (\eta {\hat{z}})\nonumber \\&+\,V_{18} \sin (\eta {\hat{z}})\cos (2\eta {\hat{z}}) \sinh (\eta {\hat{z}}) \nonumber \\&+\,V_{19}\cos (\eta {\hat{z}}) \sin (2\eta {\hat{z}}) \sinh (\eta {\hat{z}})\nonumber \\&+\,V_{20}\cos (\eta {\hat{z}}) \cos (2\eta {\hat{z}}) \cosh (\eta {\hat{z}})\nonumber \\&+\,V_{21}\sin (\eta {\hat{z}}) \sinh (\eta {\hat{z}})\cosh (2\eta {\hat{z}})\nonumber \\&+\,V_{22}\sin (\eta {\hat{z}})\cosh (\eta {\hat{z}})\sinh (2\eta {\hat{z}})\nonumber \\&+\,V_{23}\cos (\eta {\hat{z}}) \sinh (\eta {\hat{z}}) \sinh (2\eta {\hat{z}})\nonumber \\&+\,V_{24}\cos (\eta {\hat{z}}) \cosh (\eta {\hat{z}}) \cosh (2\eta {\hat{z}})\nonumber \\&+\,\sin (\eta {\hat{z}})\sin (2\eta {\hat{z}}) [V_{25}\sinh (\eta {\hat{z}}) \sinh (2\eta {\hat{z}})\nonumber \\&+\, V_{26}\cosh (\eta {\hat{z}})\cosh (2\eta {\hat{z}})]\nonumber \\&+\, \sin (\eta {\hat{z}})\cos (2\eta {\hat{z}}) [V_{27}\sinh (\eta {\hat{z}})\cosh (2\eta {\hat{z}})\nonumber \\&+\, V_{28}\cosh (\eta {\hat{z}})\sinh (2\eta {\hat{z}})]\nonumber \\&+\,\cos (\eta {\hat{z}})\sin (2\eta {\hat{z}}) [V_{29}\sinh (\eta {\hat{z}})\cosh (2\eta {\hat{z}})\nonumber \\&+\, V_{30}\cosh (\eta {\hat{z}}) \sinh (2\eta {\hat{z}})]\nonumber \\&+\,\cos (\eta {\hat{z}}) \cos (2\eta {\hat{z}}) [V_{31}\sinh (\eta {\hat{z}}) \sinh (2\eta {\hat{z}})\nonumber \\&+\, V_{32}\cosh (\eta {\hat{z}}) \cosh (2\eta {\hat{z}})], \end{aligned}$$
(A4)

where, with the introduction of \(\xi ={\hat{\kappa }}/\eta \) (for \(\eta \ne 0\)), the constants \(U_{1{-}24}\) and \(V_{1{-}32}\) are given as follows

$$\begin{aligned} U_1= & {} \frac{\xi ^8 \left( -27\xi ^8+56\xi ^4+16\right) }{2 \left( \xi ^4+4\right) ^3 \left( 81 \xi ^4+4\right) },\end{aligned}$$
(A5)
$$\begin{aligned} U_2= & {} \frac{\xi ^{12} \left( 9 \xi ^4-44\right) }{\left( \xi ^4+4\right) ^3 \left( 81 \xi ^4+4\right) },\end{aligned}$$
(A6)
$$\begin{aligned} U_3= & {} \frac{\xi ^6\left[ \left( 3 \xi ^4-10\right) C_1-\xi ^2 C_2\right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2}, \end{aligned}$$
(A7)
$$\begin{aligned} U_4= & {} \frac{\xi ^3\left[ 2 \xi ^2 \left( \xi ^4+1\right) \left( C_1+C_2\right) -\left( 3 \xi ^8-2 \xi ^4-4\right) \left( C_1-C_2\right) \right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2},\nonumber \\\end{aligned}$$
(A8)
$$\begin{aligned} U_5= & {} \frac{\xi ^3\left[ 2 \xi ^2 \left( \xi ^4+1\right) \left( C_1-C_2\right) +\left( 3 \xi ^8-2 \xi ^4-4\right) \left( C_1+C_2\right) \right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4 \right) ^2},\nonumber \\ \end{aligned}$$
(A9)
$$\begin{aligned} U_6= & {} -\frac{\xi ^6\left[ \xi ^2C_1+\left( 3\xi ^4-10\right) C_2\right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2},\end{aligned}$$
(A10)
$$\begin{aligned} U_7= & {} \frac{\xi ^2\left[ \left( \xi ^4+180\right) \left( C_1^2-C_2^2\right) +16\xi ^2C_1 C_2 \right] }{6 \left( \xi ^4+4\right) \left( \xi ^4+324\right) }, \end{aligned}$$
(A11)
$$\begin{aligned} U_8= & {} -\frac{\xi \left[ \left( \xi ^4\,{-}\,12\xi ^2+108\right) \left( C_1^2\,{-}\,C_2^2\right) +2 \left( \xi ^4+12\xi ^2+108\right) C_1 C_2\right] }{3 \left( \xi ^4+4\right) \left( \xi ^4+324\right) },\nonumber \\\end{aligned}$$
(A12)
$$\begin{aligned} U_9= & {} -\frac{\xi \left[ \left( \xi ^4+12\xi ^2+108\right) \left( C_1^2\,{-}\,C_2^2\right) \,{-}\,2 \left( \xi ^4\,{-}\,12 \xi ^2+108\right) C_1 C_2\right] }{3\left( \xi ^4+4\right) \left( \xi ^4+324\right) },\nonumber \\ \end{aligned}$$
(A13)
$$\begin{aligned} U_{10}= & {} \frac{\xi ^2\left[ 4 \xi ^2 \left( C_1^2-C_2^2\right) -\left( \xi ^4+180\right) C_1 C_2\right] }{3 \left( \xi ^4+4\right) \left( \xi ^4+324\right) },\end{aligned}$$
(A14)
$$\begin{aligned} U_{11}= & {} \left[ \frac{2\xi \left( \xi ^2+2\right) \left( \xi ^2+10\right) }{3 \left( \xi ^4+4\right) \left( \xi ^4+16\xi ^2+100\right) }\right] \left( C_1^2+C_2^2\right) ,\nonumber \\\end{aligned}$$
(A15)
$$\begin{aligned} U_{12}= & {} \left[ \frac{\xi ^2\left( \xi ^4+12\xi ^2+44\right) }{3\left( \xi ^4+4 \right) \left( \xi ^4+16\xi ^2+100\right) }\right] \left( C_1^2+C_2^2\right) ,\nonumber \\\end{aligned}$$
(A16)
$$\begin{aligned} U_{13}= & {} \left[ \frac{2\xi \left( \xi ^2-10\right) \left( \xi ^2-2\right) }{3\left( \xi ^4+4\right) \left( \xi ^4-16\xi ^2+100\right) }\right] \left( C_1^2+C_2^2\right) ,\nonumber \\\end{aligned}$$
(A17)
$$\begin{aligned} U_{14}= & {} -\left[ \frac{\xi ^2\left( \xi ^4-12\xi ^2+44\right) }{3\left( \xi ^4+4 \right) \left( \xi ^4-16\xi ^2+100\right) }\right] \left( C_1^2+C_2^2\right) ,\nonumber \\\end{aligned}$$
(A18)
$$\begin{aligned} U_{15}= & {} -C_2 \left( C_1^2+C_2^2\right) /40,\end{aligned}$$
(A19)
$$\begin{aligned} U_{16}= & {} \left( -4 C_1^3+3 C_1^2 C_2-4 C_1 C_2^2+3 C_2^3\right) /240,\end{aligned}$$
(A20)
$$\begin{aligned} U_{17}= & {} -C_1 \left( C_1^2+C_2^2\right) /40,\end{aligned}$$
(A21)
$$\begin{aligned} U_{18}= & {} \left( 3 C_1^3+4 C_1^2 C_2+3 C_1 C_2^2+4 C_2^3\right) /240,\end{aligned}$$
(A22)
$$\begin{aligned} U_{19}= & {} \left( 3 C_1^3-4 C_1^2 C_2+3 C_1 C_2^2-4 C_2^3\right) /240,\end{aligned}$$
(A23)
$$\begin{aligned} U_{20}= & {} -\left( 4 C_1^3+3 C_1^2 C_2+4 C_1 C_2^2+3 C_2^3\right) /240,\end{aligned}$$
(A24)
$$\begin{aligned} U_{21}= & {} \left( 4 C_1^3-3 C_1^2 C_2+4 C_1 C_2^2-3 C_2^3\right) /48,\end{aligned}$$
(A25)
$$\begin{aligned} U_{22}= & {} -\left( 3 C_1^3+4 C_1^2 C_2+3 C_1 C_2^2+4 C_2^3\right) /48,\end{aligned}$$
(A26)
$$\begin{aligned} U_{23}= & {} -\left( 3 C_1^3-4 C_1^2 C_2+3 C_1 C_2^2-4 C_2^3\right) /48,\end{aligned}$$
(A27)
$$\begin{aligned} U_{24}= & {} \left( 4 C_1^3+3 C_1^2 C_2+4 C_1 C_2^2+3 C_2^3\right) /48,\end{aligned}$$
(A28)
$$\begin{aligned} V_1= & {} -\frac{16 \xi ^{10} \left( 3 \xi ^4+2\right) }{\left( \xi ^4+4\right) ^3 \left( 81\xi ^4+4\right) },\end{aligned}$$
(A29)
$$\begin{aligned} V_2= & {} \frac{2\xi ^{10}\left( 19\xi ^4-4\right) }{\left( \xi ^4+4\right) ^3 \left( 81\xi ^4+4\right) },\end{aligned}$$
(A30)
$$\begin{aligned} V_3= & {} \frac{\xi ^4 \left[ \left( 3\xi ^4+4\right) C_1-4\xi ^2 C_2\right] }{12 \left( \xi ^4+4\right) ^2},\end{aligned}$$
(A31)
$$\begin{aligned} V_4= & {} -\frac{\xi ^4 \left[ 4\xi ^2C_1+\left( 3\xi ^4+4\right) C_2\right] }{12 \left( \xi ^4+4\right) ^2},\end{aligned}$$
(A32)
$$\begin{aligned} V_5= & {} -\frac{\xi ^4\left[ \left( -9 \xi ^4+8\right) C_1+\xi ^2 \left( \xi ^4+6 \right) C_2\right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2}, \end{aligned}$$
(A33)
$$\begin{aligned} V_6= & {} \frac{\xi ^3\left[ \left( \xi ^8+6\xi ^4-4\right) \left( C_1+C_2\right) -2\xi ^2\left( 3\xi ^4 -1\right) \left( C_1-C_2\right) \right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2},\nonumber \\\end{aligned}$$
(A34)
$$\begin{aligned} V_7= & {} \frac{\xi ^3\left[ \left( \xi ^8+6\xi ^4-4\right) \left( C_1-C_2\right) +2\xi ^2\left( 3\xi ^4 -1\right) \left( C_1+C_2\right) \right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2},\nonumber \\ \end{aligned}$$
(A35)
$$\begin{aligned} V_8= & {} -\frac{\xi ^4\left[ \xi ^2\left( \xi ^4+6\right) C_1+\left( 9 \xi ^4-8 \right) C_2\right] }{24 \left( \xi ^4-1\right) \left( \xi ^4+4\right) ^2},\end{aligned}$$
(A36)
$$\begin{aligned} V_9= & {} \frac{16\xi \left( \xi ^2+5\right) \left( C_1^2+C_2^2\right) }{3 \left( \xi ^4+4\right) \left( \xi ^4+16\xi ^2+100\right) },\end{aligned}$$
(A37)
$$\begin{aligned} V_{10}= & {} \frac{4\xi ^2\left( \xi ^2+2\right) \left( C_1^2+C_2^2\right) }{3 \left( \xi ^4+4\right) \left( \xi ^4+16\xi ^2+100\right) },\end{aligned}$$
(A38)
$$\begin{aligned} V_{11}= & {} \frac{16\xi \left( \xi ^2-5\right) \left( C_1^2+C_2^2\right) }{3\left( \xi ^4+4\right) \left( \xi ^4-16 \xi ^2 +100\right) },\end{aligned}$$
(A39)
$$\begin{aligned} V_{12}= & {} -\frac{4\xi ^2\left( \xi ^2-2\right) \left( C_1^2+C_2^2\right) }{3\left( \xi ^4+4\right) \left( \xi ^4-16 \xi ^2 +100\right) },\end{aligned}$$
(A40)
$$\begin{aligned} V_{13}= & {} -\frac{\xi ^2\left[ -4\xi ^2 (C_1^2-C_2^2)+\left( \xi ^4+180\right) C_1 C_2\right] }{3 \left( \xi ^4+4\right) \left( \xi ^4+324\right) }, \end{aligned}$$
(A41)
$$\begin{aligned} V_{14}= & {} -\frac{\xi \left[ \left( \xi ^4+12\xi ^2+108\right) (C_1^2-C_2^2)-2 \left( \xi ^4-12\xi ^2+108\right) C_1 C_2\right] }{3 \left( \xi ^4+4\right) \left( \xi ^4+324\right) },\nonumber \\\end{aligned}$$
(A42)
$$\begin{aligned} V_{15}= & {} \frac{\xi \left[ \left( \xi ^4-12\xi ^2+108\right) (C_1^2-C_2^2)+2 \left( \xi ^4+12\xi ^2+108\right) C_1 C_2\right] }{3 \left( \xi ^4+4\right) \left( \xi ^4+324\right) },\nonumber \\ \end{aligned}$$
(A43)
$$\begin{aligned} V_{16}= & {} -\frac{\xi ^2\left[ \left( \xi ^4+180\right) (C_1^2-C_2^2)+16 \xi ^2 C_1 C_2\right] }{6 \left( \xi ^4+4\right) \left( \xi ^4+324\right) },\end{aligned}$$
(A44)
$$\begin{aligned} V_{17}= & {} \left( 2 C_1^3-5 C_1^2 C_2+2 C_1 C_2^2-5 C_2^3\right) /24,\end{aligned}$$
(A45)
$$\begin{aligned} V_{18}= & {} \left( C_1^3+5 C_1^2 C_2+C_1 C_2^2+5 C_2^3\right) /24, \end{aligned}$$
(A46)
$$\begin{aligned} V_{19}= & {} -\left( 6 C_1^3+7 C_1^2 C_2+6 C_1 C_2^2+7 C_2^3\right) /48, \end{aligned}$$
(A47)
$$\begin{aligned} V_{20}= & {} \left( 7 C_1^3-6 C_1^2 C_2+7 C_1 C_2^2-6 C_2^3\right) /48, \end{aligned}$$
(A48)
$$\begin{aligned} V_{21}= & {} -\left( C_1^3-5 C_1^2 C_2+C_1 C_2^2-5 C_2^3\right) /24, \end{aligned}$$
(A49)
$$\begin{aligned} V_{22}= & {} \left( 6 C_1^3-7 C_1^2 C_2+6 C_1 C_2^2-7 C_2^3\right) /48, \end{aligned}$$
(A50)
$$\begin{aligned} V_{23}= & {} -\left( 2 C_1^3+5 C_1^2 C_2+2 C_1 C_2^2+5 C_2^3\right) /24, \end{aligned}$$
(A51)
$$\begin{aligned} V_{24}= & {} \left( 7 C_1^3+6 C_1^2 C_2+7 C_1 C_2^2+6 C_2^3\right) /48, \end{aligned}$$
(A52)
$$\begin{aligned} V_{25}= & {} C_1 \left( C_1^2+C_2^2\right) /60, \end{aligned}$$
(A53)
$$\begin{aligned} V_{26}= & {} -\left( 7 C_1^3-4 C_1^2 C_2+7 C_1 C_2^2-4 C_2^3\right) /240, \end{aligned}$$
(A54)
$$\begin{aligned} V_{27}= & {} C_2 \left( C_1^2+C_2^2\right) /15, \end{aligned}$$
(A55)
$$\begin{aligned} V_{28}= & {} \left( 4 C_1^3-13 C_1^2 C_2+4 C_1 C_2^2-13 C_2^3\right) /240, \end{aligned}$$
(A56)
$$\begin{aligned} V_{29}= & {} -\left( 4 C_1^3+13 C_1^2 C_2+4 C_1 C_2^2+13 C_2^3\right) /240, \end{aligned}$$
(A57)
$$\begin{aligned} V_{30}= & {} C_2 \left( C_1^2+C_2^2\right) /24, \end{aligned}$$
(A58)
$$\begin{aligned} V_{31}= & {} \left( 7 C_1^3+4 C_1^2 C_2+7 C_1 C_2^2+4 C_2^3\right) /240, \end{aligned}$$
(A59)
$$\begin{aligned} V_{32}= & {} -C_1 \left( C_1^2+C_2^2\right) /24, \end{aligned}$$
(A60)

in which \(C_1\) and \(C_2\) are given in Eqs. (44) and (45), respectively.

Setting \({\hat{z}}=1\) in the functions \(U_\kappa ({\hat{z}}), U_\eta ({\hat{z}}), V_\kappa ({\hat{z}})\), and \(V_\eta ({\hat{z}})\), we obtain the parameters \(M_{\kappa , \eta }\) and \(N_{\kappa , \eta }\) as follows

$$\begin{aligned} M_\kappa= & {} \frac{\xi ^2 C_1C_2}{3\left( \xi ^4+4\right) } +U_1\tanh ^2({\hat{\kappa }} )+U_2\nonumber \\&+\,U_3 \left[ 1+\tanh ^2({\hat{\kappa }})\right] \sin (\eta ) \sinh (\eta ) \nonumber \\&+\, 2\tanh ({\hat{\kappa }}) \left[ U_4\sin (\eta ) \cosh (\eta ) + U_5\cos (\eta ) \sinh (\eta )\right] \nonumber \\&+\,U_6\left[ 1+\tanh ^2({\hat{\kappa }})\right] \cos (\eta ) \cosh (\eta )\nonumber \\&+\, U_7 \sin (2 \eta ) \sinh (2 \eta )\nonumber \\&+\, \tanh ({\hat{\kappa }})[U_8\sin (2 \eta ) \cosh (2 \eta )\nonumber \\&+\, U_9\cos (2 \eta ) \sinh (2 \eta )] \nonumber \\&+\, U_{10}\cos (2 \eta ) \cosh (2 \eta )\nonumber \\&+\,U_{11}\tanh ({\hat{\kappa }} )\sin (2 \eta ) +U_{12} \cos (2 \eta )\nonumber \\&+\, U_{13}\tanh ({\hat{\kappa }})\sinh (2\eta )+U_{14}\cosh (2 \eta ),\end{aligned}$$
(A61)
$$\begin{aligned} M_\eta= & {} \sin (\eta ) \sin (2 \eta )[U_{15} \sinh (\eta ) \sinh (2 \eta )\nonumber \\&+\,U_{16} \cosh (\eta ) \cosh (2 \eta )]\nonumber \\&+\, \sin (\eta ) \cos (2 \eta )[U_{17} \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, U_{18} \cosh (\eta ) \sinh (2 \eta )]\nonumber \\&+\, \cos (\eta )[U_{19} \sin (2 \eta ) \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, U_{20} \cos (2 \eta ) \sinh (\eta ) \sinh (2 \eta )]\nonumber \\&+\, U_{21} \sin (\eta ) \sin (2 \eta ) \cosh (\eta )\nonumber \\&+\, U_{22} \sin (\eta ) \cos (2 \eta ) \sinh (\eta )\nonumber \\&+\, U_{23} \sin (\eta ) \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, U_{24} \cos (\eta ) \sinh (\eta ) \sinh (2 \eta ),\end{aligned}$$
(A62)
$$\begin{aligned} N_\kappa= & {} \frac{\xi ^2\left( C_1^2-C_2^2\right) }{6\left( \xi ^4+4\right) }\nonumber \\&+\,\frac{\xi ^4{{\mathrm{sech}}}^2({\hat{\kappa }})}{6(\xi ^4+4)} [C_2 \cos (\eta ) \cosh (\eta )-C_1 \sin (\eta ) \sinh (\eta )]\nonumber \\&+\,V_1\tanh ^2({\hat{\kappa }})+ V_2+{{\mathrm{sech}}}^2({\hat{\kappa }}) [V_3\sin (\eta )\sinh (\eta ) \nonumber \\&+\, V_4\cos (\eta )\cosh (\eta )]\nonumber \\&+\,V_5[1+\tanh ^2({\hat{\kappa }})]\sin (\eta ) \sinh (\eta )\nonumber \\&+\,2 V_6\tanh ({\hat{\kappa }}) \sin (\eta ) \cosh (\eta ) \nonumber \\&+\,2V_7\tanh ({\hat{\kappa }})\cos (\eta )\sinh (\eta ) \nonumber \\&+\, V_8[1+\tanh ^2({\hat{\kappa }})]\cos (\eta ) \cosh (\eta ) \nonumber \\&+\, V_9\tanh ({\hat{\kappa }})\sin (2\eta )+V_{10}\cos (2\eta )\nonumber \\&+\,V_{11}\tanh ({\hat{\kappa }})\sinh (2\eta ) +V_{12}\cosh (2\eta ) \nonumber \\&+\, V_{13}\sin (2 \eta ) \sinh (2 \eta )+ \tanh ({\hat{\kappa }}) [V_{14}\sin (2 \eta ) \cosh (2 \eta )\nonumber \\&+\, V_{15}\cos (2 \eta ) \sinh (2 \eta )] \nonumber \\&+\, V_{16}\cos (2 \eta ) \cosh (2 \eta ),\end{aligned}$$
(A63)
$$\begin{aligned} N_\eta= & {} \frac{5}{12} (C_1^2+C_2^2)[C_2 \sin (\eta ) \sinh (\eta )\nonumber \\&-\,C_1 \cos (\eta ) \cosh (\eta )]\nonumber \\&+\,\sin (\eta )[V_{17}\cosh (\eta ) \sin (2 \eta )\nonumber \\&+\, V_{18}\sinh (\eta ) \cos (2 \eta )]\nonumber \\&+\, \cos (\eta )[V_{19}\sinh (\eta )\sin (2 \eta )\nonumber \\&+\, V_{20}\cosh (\eta ) \cos (2 \eta )] \nonumber \\&+\,\sin (\eta ) [V_{21} \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, V_{22} \sinh (2 \eta ) \cosh (\eta )]\nonumber \\&+\,\cos (\eta ) [V_{23} \sinh (\eta ) \sinh (2 \eta )\nonumber \\&+\, V_{24} \cosh (\eta ) \cosh (2 \eta )]\nonumber \\&+\, \sin (\eta ) \sin (2 \eta ) [V_{25} \sinh (\eta ) \sinh (2 \eta )\nonumber \\&+\, V_{26} \cosh (\eta ) \cosh (2 \eta )]\nonumber \\&+\, \sin (\eta ) \cos (2 \eta ) [V_{27} \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, V_{28} \sinh (2 \eta ) \cosh (\eta )]\nonumber \\&+\, \sin (2 \eta ) \cos (\eta ) [V_{29} \sinh (\eta ) \cosh (2 \eta )\nonumber \\&+\, V_{30} \sinh (2 \eta ) \cosh (\eta )]\nonumber \\&+\, \cos (\eta ) \cos (2 \eta ) [V_{31} \sinh (\eta ) \sinh (2 \eta )\nonumber \\&+\, V_{32} \cosh (\eta ) \cosh (2 \eta )]. \end{aligned}$$
(A64)

In Eq. (65), the two coefficients \(K_{\kappa , \eta }\) are

$$\begin{aligned} K_\kappa= & {} -\frac{2\xi (C_1^2-C_2^2)}{3 (\xi ^4+4)} \tanh ({\hat{\kappa }} )\nonumber \\&+\,\frac{4 \xi ^9 (4-119 \xi ^4)}{3 (\xi ^4+4)^3 (81 \xi ^4+4)} {{\mathrm{sech}}}^2({\hat{\kappa }} ) \tanh ({\hat{\kappa }} )\nonumber \\&+\,\frac{20 \xi ^9}{3 (\xi ^4+4)^2 (81 \xi ^4+4)} {{\mathrm{sech}}}^2({\hat{\kappa }} )\tanh ({\hat{\kappa }} )\cosh (2 {\hat{\kappa }} )\nonumber \\&+\,\frac{\xi ^4 \text {sech}^2({\hat{\kappa }} )}{6 (\xi ^4+4)} [\sin (\eta ) \cosh (\eta )(C_1-C_2)\nonumber \\&-\cos (\eta ) \sinh (\eta )(C_1+C_2)]\nonumber \\&-2{{\mathrm{sech}}}^2({\hat{\kappa }} )[\sin (\eta ) \cosh (\eta ) (V_3+V_4)\nonumber \\&-\cos (\eta )\sinh (\eta ) (V_3-V_4)]\nonumber \\&+\,\frac{\text {sech}^2({\hat{\kappa }})}{2\xi ^2-2\xi +1} [K_1 \sin (\eta ) \cosh (\eta -2 {\hat{\kappa }} )\nonumber \\&+\,K_2 \cos (\eta ) \sinh (\eta -2 {\hat{\kappa }} )]\nonumber \\&+\,\frac{\text {sech}^2({\hat{\kappa }} )}{2 \xi ^2+2\xi +1} [-K_3 \sin (\eta ) \cosh (\eta +2 {\hat{\kappa }} )\nonumber \\&+\,K_4 \cos (\eta ) \sinh (\eta +2 {\hat{\kappa }} )]\nonumber \\&+\,\frac{4}{4+\xi ^2} [-K_5 \sin (2 \eta ) +K_6 \tanh ({\hat{\kappa }})\cos (2 \eta ) ]\nonumber \\&+\,\frac{4}{4-\xi ^2} [K_7 \sinh (2\eta ) +K_8\tanh ({\hat{\kappa }})\cosh (2 \eta ) ]\nonumber \\&-\frac{4\sin (2 \eta )}{64+\xi ^4} [K_9 \tanh ({\hat{\kappa }} )\sinh (2 \eta )+K_{10} \cosh (2 \eta )]\nonumber \\&+\,\frac{4 \cos (2 \eta )}{64+\xi ^4} [K_{11} \sinh (2 \eta )+K_{12}\tanh ({\hat{\kappa }} ) \cosh (2 \eta ) ],\nonumber \\\end{aligned}$$
(A65)
$$\begin{aligned} K_\eta= & {} \frac{5}{6} (C_1^2+C_2^2) [(C_1-C_2) \sin (\eta ) \cosh (\eta )\nonumber \\&+\,(C_1+C_2) \cos (\eta ) \sinh (\eta )]\nonumber \\&+\,\frac{K_{13}}{5} \sin (\eta ) \cosh (3 \eta )+\frac{K_{14}}{5} \sin (3 \eta ) \cosh (\eta )\nonumber \\&+\,\frac{K_{15}}{5} \cos (\eta ) \sinh (3 \eta )\nonumber \\&+\,\frac{K_{16}}{5} \cos (3 \eta ) \sinh (\eta )+K_{17} \sin (\eta ) \cosh (\eta )\nonumber \\&+\,K_{18} \cos (\eta ) \sinh (\eta )\nonumber \\&+\, \frac{K_{19}}{2} \sin (\eta ) \cosh (\eta )+\frac{K_{20}}{2} \cos (\eta ) \sinh (\eta )\nonumber \\&+\, \frac{K_{21}}{6} \sin (3 \eta ) \cosh (3 \eta )\nonumber \\&+\,\frac{K_{22}}{6} \cos (3 \eta ) \sinh (3 \eta )+ \frac{K_{23}}{10} \sin (\eta ) \cosh (3 \eta )\nonumber \\&+\,\frac{K_{24}}{10} \sin (3 \eta ) \cosh (\eta )\nonumber \\&+\,\frac{K_{25}}{10} \cos (\eta ) \sinh (3 \eta )+\frac{K_{26}}{10} \cos (3 \eta ) \sinh (\eta ),\nonumber \\ \end{aligned}$$
(A66)

in which \(K_{1{-}26}\) are given as follows

$$\begin{aligned} K_1= & {} (1-2\xi )(-V_5+V_6)+V_7-V_8,\end{aligned}$$
(A67)
$$\begin{aligned} K_2= & {} V_5-V_6+(1-2\xi )(V_7-V_8),\end{aligned}$$
(A68)
$$\begin{aligned} K_3= & {} (1+2\xi )(V_5+V_6)+V_7+V_8, \end{aligned}$$
(A69)
$$\begin{aligned} K_4= & {} V_5+V_6-(1+2\xi )(V_7+V_8), \end{aligned}$$
(A70)
$$\begin{aligned} K_5= & {} \xi V_9+2V_{10}, \end{aligned}$$
(A71)
$$\begin{aligned} K_6= & {} 2V_9-\xi V_{10}, \end{aligned}$$
(A72)
$$\begin{aligned} K_7= & {} \xi V_{11}-2V_{12}, \end{aligned}$$
(A73)
$$\begin{aligned} K_8= & {} -2V_{11}+\xi V_{12} ,\end{aligned}$$
(A74)
$$\begin{aligned} K_9= & {} \xi ^3V_{13}+(16-2\xi ^2)V_{14}\nonumber \\&+\,(16+2\xi ^2)V_{15}-8\xi V_{16}, \end{aligned}$$
(A75)
$$\begin{aligned} K_{10}= & {} (16-2\xi ^2)V_{13}+\xi ^3V_{14} -8\xi V_{15}\nonumber \\&+\,(16+2\xi ^2)V_{16}, \end{aligned}$$
(A76)
$$\begin{aligned} K_{11}= & {} (16+2\xi ^2)V_{13}-8\xi V_{14} -\xi ^3 V_{15}\nonumber \\&-(16-2\xi ^2)V_{16}, \end{aligned}$$
(A77)
$$\begin{aligned} K_{12}= & {} -8\xi V_{13}+(16+2\xi ^2)V_{14}\nonumber \\&+\,(-16+2\xi ^2)V_{15}-\xi ^3V_{16}, \end{aligned}$$
(A78)
$$\begin{aligned} K_{13}= & {} -3V_{21}-3V_{22}-V_{23}-V_{24}, \end{aligned}$$
(A79)
$$\begin{aligned} K_{14}= & {} 3V_{17}-V_{18}-V_{19}-3V_{20}, \end{aligned}$$
(A80)
$$\begin{aligned} K_{15}= & {} V_{21}+V_{22}-3V_{23}-3V_{24}, \end{aligned}$$
(A81)
$$\begin{aligned} K_{16}= & {} V_{17}+3V_{18}+3V_{19}-V_{20}, \end{aligned}$$
(A82)
$$\begin{aligned} K_{17}= & {} -V_{17}+V_{18}-V_{19}-V_{20}\nonumber \\&+\,V_{21}-V_{22}+V_{23}-V_{24}, \end{aligned}$$
(A83)
$$\begin{aligned} K_{18}= & {} -V_{17}-V_{18}+V_{19}-V_{20}-V_{21}\nonumber \\&+\,V_{22}+V_{23}-V_{24}, \end{aligned}$$
(A84)
$$\begin{aligned} K_{19}= & {} V_{25}-V_{26}-V_{27}+V_{28}+V_{29}\nonumber \\&-V_{30}+V_{31}-V_{32} ,\end{aligned}$$
(A85)
$$\begin{aligned} K_{20}= & {} V_{25}-V_{26}+V_{27}-V_{28}-V_{29}\nonumber \\&+\,V_{30}+V_{31}-V_{32}, \end{aligned}$$
(A86)
$$\begin{aligned} K_{21}= & {} V_{25}+V_{26}-V_{27}-V_{28}-V_{29}\nonumber \\&-V_{30}-V_{31}-V_{32}, \end{aligned}$$
(A87)
$$\begin{aligned} K_{22}= & {} V_{25}+V_{26}+V_{27}+V_{28}+V_{29}\nonumber \\&+\,V_{30}-V_{31}-V_{32}, \end{aligned}$$
(A88)
$$\begin{aligned} K_{23}= & {} -V_{25}-V_{26}+3V_{27}+3V_{28}-3V_{29}\nonumber \\&-3V_{30}-V_{31}-V_{32}, \end{aligned}$$
(A89)
$$\begin{aligned} K_{24}= & {} -3V_{25}+3V_{26}+V_{27}-V_{28}+V_{29}\nonumber \\&-V_{30}+3V_{31}-3V_{32}, \end{aligned}$$
(A90)
$$\begin{aligned} K_{25}= & {} -3V_{25}-3V_{26}-V_{27}-V_{28}+V_{29}\nonumber \\&+\,V_{30}-3V_{31}-3V_{32}, \end{aligned}$$
(A91)
$$\begin{aligned} K_{26}= & {} -V_{25}+V_{26}-3V_{27}+3V_{28}-3V_{29}\nonumber \\&+\,3V_{30}+V_{31}-V_{32}. \end{aligned}$$
(A92)

Under the assumptions of \({\hat{\kappa }}\gg 1\) and \(\eta \gg 1\), the four functions \(U_{\kappa , \eta }({\hat{z}})\) and \(V_{\kappa , \eta }({\hat{z}})\) in Eqs. (A1)–(A4) can be simplified and expressed in terms of the variable \(z^*\) as follows

$$\begin{aligned} U_\kappa ^*(z^*)= & {} -\frac{8 \xi ^3 \left( \xi ^5+10 \xi ^4+46 \xi ^3+84 \xi ^2+16 \xi -24\right) \mathrm{e}^{-(\xi +2) z^*}}{3 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^2+6 \xi +10\right) \left( \xi ^2+6 \xi +18\right) }\nonumber \\&+\,\frac{\xi ^4 \left( 6 \xi ^6+9 \xi ^5+9 \xi ^4+6 \xi ^3-4 \xi ^2-4 \xi -4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) }\nonumber \\&\times \,\mathrm{e}^{-(2 \xi +1) z^*} \sin \left( z^*\right) \nonumber \\&-\frac{\xi ^4 \left( 3 \xi ^5+5 \xi ^4+8 \xi ^3+8 \xi ^2+8 \xi +4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) }\nonumber \\&\times \, \mathrm{e}^{-(2 \xi +1) z^*} \cos \left( z^*\right) +\frac{\xi ^8 \left( 4-9 \xi ^4\right) \mathrm{e}^{-3\xi z^*}}{2 \left( \xi ^4+4\right) ^2 \left( 81 \xi ^4+4\right) }, \end{aligned}$$
(A93)
$$\begin{aligned} U_{\eta }^*(z^*)= & {} \frac{8 \xi ^3 \left[ (7 \xi -6) \sin \left( z^*\right) +(\xi -8) \cos \left( z^*\right) \right] }{15 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) } \mathrm{e}^{-3 z^*}, \end{aligned}$$
(A94)
$$\begin{aligned} V_\kappa ^*(z^*)= & {} -\frac{10 \xi ^{10} \mathrm{e}^{-3 \xi z^*}}{\left( \xi ^4+4\right) ^2 \left( 81 \xi ^4+4\right) }\nonumber \\&-\frac{64 \xi ^3 (\xi +2) \mathrm{e}^{-(\xi +2) z^*}}{3 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^2+6 \xi +10\right) }\nonumber \\&+\,\frac{\xi ^4 \left( \xi ^5+15 \xi ^4+20 \xi ^3+20 \xi ^2+16 \xi +4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) }\nonumber \\&\times \, \mathrm{e}^{-(2 \xi +1) z^*} \sin \left( z^*\right) \nonumber \\&+\,\frac{\xi ^4 \left( 2 \xi ^6+3 \xi ^5+3 \xi ^4-2 \xi ^3-4 \xi -4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) }\nonumber \\&\times \, \mathrm{e}^{-(2 \xi +1) z^*} \cos \left( z^*\right) \nonumber \\&+\,\frac{8 \xi ^3 \left[ 6 (\xi +2) \cos \left( 2z^*\right) -\left( \xi ^3+4 \xi ^2+8 \xi -12\right) \sin \left( 2 z^*\right) \right] }{3 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^2+6 \xi +18\right) }\nonumber \\&\times \, \mathrm{e}^{-(\xi +2) z^*}, \end{aligned}$$
(A95)
$$\begin{aligned} V_\eta ^*(z^*)= & {} \frac{8 \xi ^3 \left[ (7 \xi -6) \cos \left( z^*\right) -(\xi -8) \sin \left( z^*\right) \right] }{15 \left( \xi ^2+2 \xi +2\right) \left( \xi ^4+4\right) ^2} \mathrm{e}^{-3 z^*}. \end{aligned}$$
(A96)

Similarly, the six coefficients \(M_{\kappa ,\eta }^*, N_{\kappa , \eta }^*\), and \(K_{\kappa , \eta }^*\) corresponding to \(M_{\kappa , \eta }, N_{\kappa , \eta }\), and \(K_{\kappa , \eta }\) reduce to

$$\begin{aligned} M_\kappa ^*= & {} \frac{\xi ^8 \left( 4-9 \xi ^4\right) }{2 \left( \xi ^4+4\right) ^2 \left( 81 \xi ^4+4\right) }\nonumber \\&-\frac{\xi ^4 \left( 3 \xi ^5+5 \xi ^4+8 \xi ^3+8 \xi ^2+8 \xi +4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) }\nonumber \\&-\frac{8 \xi ^3 \left( \xi ^5+10 \xi ^4+46 \xi ^3+84 \xi ^2+16 \xi -24\right) }{3 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^2+6 \xi +10\right) \left( \xi ^2+6 \xi +18\right) }, \nonumber \\\end{aligned}$$
(A97)
$$\begin{aligned} M_\eta ^*= & {} \frac{8\xi ^3(\xi -8)}{15 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) }, \end{aligned}$$
(A98)
$$\begin{aligned} N_\kappa ^*= & {} -\frac{10 \xi ^{10}}{\left( \xi ^4+4\right) ^2 \left( 81 \xi ^4+4\right) }\nonumber \\&+\,\frac{\xi ^4 \left( 2 \xi ^6+3 \xi ^5+3 \xi ^4-2 \xi ^3-4 \xi -4\right) }{6 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^3+\xi ^2+\xi +1\right) } \nonumber \\&-\frac{16 \xi ^3 (\xi +2) \left( \xi ^2+6 \xi +42\right) }{3 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) \left( \xi ^2+6 \xi +10\right) \left( \xi ^2+6 \xi +18\right) }, \nonumber \\&\end{aligned}$$
(A99)
$$\begin{aligned} N_\eta ^*= & {} \frac{8 \xi ^3 (7 \xi -6)}{15 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) }, \end{aligned}$$
(A100)
$$\begin{aligned} K_\kappa ^*= & {} \left[ \frac{32 \left( \xi ^3+7 \xi ^2+16 \xi +42\right) }{\left( \xi ^2+6 \xi +10\right) \left( \xi ^2+6 \xi +18\right) }\right. \nonumber \\&\left. -\frac{\xi ^2 \left( \xi ^4+\xi ^3+\xi ^2+2 \xi +2\right) }{\xi ^3+\xi ^2+\xi +1}\right] \frac{2\xi ^3 }{3 \left( \xi ^2+2 \xi +2\right) \left( \xi ^4+4\right) ^2}\nonumber \\&+\, \frac{40 \xi ^9}{3 \left( \xi ^4+4\right) ^2 \left( 81 \xi ^4+4\right) }, \end{aligned}$$
(A101)
$$\begin{aligned} K_\eta ^*= & {} -\frac{32 \xi ^3 (2 \xi -1)}{15 \left( \xi ^4+4\right) ^2 \left( \xi ^2+2 \xi +2\right) }. \end{aligned}$$
(A102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Ng, CO. Rotating electroosmotic flow of an Eyring fluid. Acta Mech. Sin. 33, 295–315 (2017). https://doi.org/10.1007/s10409-016-0629-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0629-4

Keywords

Navigation