Skip to main content
Log in

Mechanisms of rectangular groove-induced multiple-microdroplet coalescences

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The mechanism of microdroplet coalescence is a fundamental issue for droplet-based microfluidics. We developed an asymmetric expansion (a rectangular groove) along one side of a microchannel to achieve multiple-microdroplet trapping, collision, and coalescence. Compared with reported symmetric expansions, this asymmetric groove could easily trap microdroplets and control two or three microdroplet coalescences precisely without a requirement for temporal and spatial synchronization. To reveal the mechanisms of multiple-droplet coalescences in a groove, we observed five different coalescence patterns under different flow conditions. Moreover, we characterized the flow behavior quantitatively by simulating the velocity vector fields in both the microdroplets and continuous phase, finding good agreement with experiments. Finally, a map of coalescence forms with different capillary numbers (\(0.001< {Ca} <0.016\)) and flow ratios (\(0.1<e<0.9\)) was obtained. The results could provide a useful guidance for the design and application of droplet-based microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitesides, G.M.: The origins and future of microfluidics. Nature 442, 368–373 (2006)

    Article  Google Scholar 

  2. Mark, D., Haeberle, S.: Roth G, R., et al.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182 (2010)

    Article  Google Scholar 

  3. Stone, H.A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  MATH  Google Scholar 

  4. Schoeman, R.M., Kemna, E.W.M., Wolbers, F., et al.: High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device. Electrophoresis 35, 385–392 (2014)

    Article  Google Scholar 

  5. Aoki, N., Fukuda, T., Maeda, N., et al.: Design of confluence and bend geometry for rapid mixing in microchannels. Chem. Eng. J. 227, 198–202 (2013)

    Article  Google Scholar 

  6. Christopher, G.F., Bergstein, J., End, N.B., et al.: Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9, 1102–1109 (2009)

    Article  Google Scholar 

  7. Gu, H., Duits, M.H.G., Mugele, F.: Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12, 2572–2597 (2011)

    Article  Google Scholar 

  8. Wang, K., Lu, Y., Yang, L., et al.: Microdroplet coalescences at microchannel junctions with different collision angles. AIChE J. 59, 643–649 (2013)

    Article  Google Scholar 

  9. Liu, Z.M., Liu, L.K., Shen, F.: Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels. Acta Mech. Sin. 46, 210–216 (2014)

    Google Scholar 

  10. Wang, K., Lu, Y., Tostado, C.P., et al.: Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control. Chem. Eng. J. 227, 90–96 (2013)

    Article  Google Scholar 

  11. Gunes, D.Z., Bercy, M., Watzke, B., et al.: A study of extensional flow induced coalescence in microfluidic geometries with lateral channels. Soft Matter 9, 7526–7537 (2013)

    Article  Google Scholar 

  12. Zheng, B., Tice, J.D., Ismagilov, R.F.: Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76, 4977–4982 (2004)

    Article  Google Scholar 

  13. Sivasamy, J., Chim, Y.C., Wong, T.N., et al.: Reliable addition of reagents into microfluidic droplets. Microfluid. Nanofluid. 8, 409–416 (2010)

    Article  Google Scholar 

  14. Liu, Z.M., Cao, R.T., Pang, Y., et al.: The influence of channel intersection angle on droplets coalescence process. Exp. Fluids 56, 1–4 (2015)

    Article  Google Scholar 

  15. Simon, M.G., Lee, A.P.: Microfluidic Droplet Manipulations And Their Applications. In: Microdroplet Technology, Principles and eMerging Applications in Biology and Chemistry. Springer, New York, 52–58 (2012)

  16. Li, Z.G., Ando, K., Yu, J.Q., et al.: Fast on-demand droplet fusion using transient cavitation bubbles. Lab Chip 11, 1879–1885 (2011)

    Article  Google Scholar 

  17. Zagnoni, M., Baroud, C.N., Cooper, J.M.: Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Phys. Rev. E. 80, 593–598 (2009)

    Article  Google Scholar 

  18. Baroud, C.N., de, : Saint Vincent, M.R., Delville, J.P.: An optical toolbox for total control of droplet microfluidics. Lab Chip 7, 1029–1033 (2007)

  19. Fidalgo, L.M., Abell, C., Huck, W.: Surface-induced droplet fusion in microfluidic devices. Lab Chip 7, 984–986 (2007)

    Article  Google Scholar 

  20. Chokkalingam, V., Weidenhof, B., Kramer, M., et al.: Optimized droplet-based microfluidics scheme for sol-gel reactions. Lab Chip 10, 1700–1705 (2010)

    Article  Google Scholar 

  21. Niu, X., Gulati, S., Edel, J.B., et al.: Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837–1841 (2008)

    Article  Google Scholar 

  22. Thiam, A.R., Bremond, N., Bibette, J.: Breaking of an emulsion under an ac electric field. Phys. Rev. Lett. 102, 188304:1–188304:4 (2009)

  23. Xu, B., Nguyen, N.T., Wong, T.N.: Temperature-induced droplet coalescence in microchannels. Biomicrofluidics 6, 263–268 (2012)

    Google Scholar 

  24. Jung, J.H., Lee, K.H., Destgeer, G., et al.: In situ seriate droplet coalescence under an optical force. Microfluid. Nanofluid. 18, 1247–1254 (2015)

    Article  Google Scholar 

  25. Garcia, A.A., Egatz-Gomez, A., Lindsay, S.A., et al.: Magnetic movement of biological fluid droplets. J. Magn. Magn. Mater. 311, 238–243 (2007)

    Article  Google Scholar 

  26. Sesen, M., Alan, T., Neild, A.: Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 14, 3325–3333 (2014)

    Article  Google Scholar 

  27. Sivasamy, J., Chim, Y.C., Wong, T., et al.: Reliable addition of reagents into microfluidic droplets. Microfluid. Nanofluid. 8, 409–416 (2010)

    Article  Google Scholar 

  28. Liu, K., Ding, H.J., Chen, Y., et al.: Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluid. Nanofluid. 3, 239–243 (2007)

    Article  Google Scholar 

  29. Ho, P.C., Nguyen, N.: Numerical study of thermo coalescence of microdroplets in a microfluidic chamber. Phys. Fluids 25, 082006 (2013)

    Article  Google Scholar 

  30. Yang, L., Wang, K., Tan, J., et al.: Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluid. Nanofluid. 12, 715–722 (2012)

    Article  Google Scholar 

  31. Lucas, F., Abdeslam, E., Matthias, P., et al.: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. 47(36), 6817–6820 (2008)

    Article  Google Scholar 

  32. Baroud, C.N., Gallaire, F., Dangla, R.: Dynamics of microfluidic droplets. Lab Chip 16, 2032–2045 (2010)

    Article  Google Scholar 

  33. Raven, J.P., Marmottant, P.: Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows. Phys. Rev. Lett. 97, 13129–13169 (2006)

    Article  Google Scholar 

  34. Guillot, P., Colin, A., Ajdari, A.: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys. Rev. E 78, 139–143 (2008)

    Article  Google Scholar 

  35. Seemann, R., Brinkmann, M., Pfohl, T., et al.: Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012)

    Article  Google Scholar 

  36. Nghe, P., Terriac, E., Schneider, M., et al.: Microfluidics and complex fluids. Lab Chip 11, 788–794 (2011)

    Article  Google Scholar 

  37. Chen, X.D., Hu, G.Q.: Multiphase flow in microfluidic devices. Adv. Mech. 45, 201503 (2015)

    Google Scholar 

  38. Li, Z.H., Wu, J.K., Hu, G.Q., et al.: Fluid Flow in Microfluidic Chips. Science Press, Beijing (2012)

    Google Scholar 

  39. Shen, F., Li, Y., Liu, Z.M., et al.: Advances in micro-droplets coalescence using microfluidics. Chin. J. Anal. Chem. 43, 1942–1954 (2015)

    Article  Google Scholar 

  40. Deng, N., Wang, W., Ju, X., et al.: Recent advances in microfluidic manipulation and coalescence of microscale droplets. Sci. Sin. 45, 7–15 (2015)

  41. Jin, B.J., Yoo, J.Y.: Visualization of droplet merging in microchannels using micro-PIV. Exp. Fluids 52, 235–245 (2012)

    Article  Google Scholar 

  42. Liu, Z.M., Wang, X., Cao, R.T., et al.: Droplet coalescence at microchannel intersection chambers with different shapes. Soft Matter 12, 5797–5807 (2016)

    Article  Google Scholar 

  43. Lindken, R., Rossi, M., Grosse, S., et al.: Micro-particle image velocimetry (micro-PIV): recent developments, applications, and guidelines. Lab Chip 9, 2551–2567 (2009)

    Article  Google Scholar 

  44. Kinoshita, H., Kaneda, S., Fujii, T., et al.: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7, 338–346 (2007)

    Article  Google Scholar 

  45. Oishi, M., Kinoshita, H., Fujii, T., et al.: Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV). Meas. Sci. Technol. 22, 880–897 (2011)

    Article  Google Scholar 

  46. Yan, Y., Guo, D., Luo, J., et al.: Numerical simulation of droplet dynamic behaviors in a convergent microchannel. Biochip J. 7, 325–334 (2013)

    Article  Google Scholar 

  47. Choi, S.B., Lee, J.S.: Film drainage mechanism between two immiscible droplets. Microfluid. Nanofluid. 17, 675–681 (2014)

    Article  Google Scholar 

  48. Woerner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12, 841–886 (2012)

    Article  Google Scholar 

  49. Mohammadi, M., Shahhosseini, S., Bayat, M.: Direct numerical simulation of water droplet coalescence in the oil. Int. J. Heat Fluid Fl. 36, 58–71 (2012)

    Article  Google Scholar 

  50. Sarrazin, F., Loubière, K., Prat, L., et al.: Experimental and numerical study of droplets hydrodynamics in microchannels. AICHE J. 52, 4061–4070 (2006)

    Article  Google Scholar 

  51. Wörner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12, 841–886 (2012)

    Article  Google Scholar 

  52. Whitesides, G.M., Stroock, A.D.: Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001)

    Article  Google Scholar 

  53. ANSYS FLUENT Theory Guide Release 14.0, ANSYS, Inc., Southpointe (2011)

  54. Li, S.Z., Chen, R., Wang, H., et al.: Simulation on the coalescence of the moving liquid column and droplet in a hydrophilic microchannel by volume of fluid method. Appl. Therm. Eng. 64, 129–138 (2014)

    Article  Google Scholar 

  55. Glawdel, T., Ren, C.L.: Global network design for robust operation of microfluidic droplet generators with pressure driven flow. Microfluid. Nanofluid. 13, 469–480 (2012)

    Article  Google Scholar 

  56. Korczyk, P.M., Cybulski, O., Makulskaa, S., et al.: Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab Chip 11, 173–175 (2011)

    Article  Google Scholar 

  57. Bremond, N., Thiam, A.R., Bibette, J.: Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100, 024501–024501 (2008)

    Article  Google Scholar 

  58. Lai, A., Bremond, N., Stone, H.A.: Separation-driven coalescence of droplets: an analytical criterion for the approach to contact. J. Fluid Mech. 632, 97–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Natural Science Foundation (Grant 7152012), the General Program of Science and Technology Development Project of the Beijing Municipal Education Commission (Grant KM201610005002), the National Natural Science Foundation of China (Grant 11572013), the China Scholarship Council (Grant 201406545031), and the Training Plan of New Talent of Beijing University of Technology (Grant 2015-RX-L02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Shen or Zhaomiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Li, Y., Wang, G. et al. Mechanisms of rectangular groove-induced multiple-microdroplet coalescences. Acta Mech. Sin. 33, 585–594 (2017). https://doi.org/10.1007/s10409-016-0623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0623-x

Keywords

Navigation