Skip to main content
Log in

Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kushwaha, M.S., Halevi, P.G., Martinez, L., et al.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  2. Qian, Z.H., Jin, F., Wang, Z.K., et al.: Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. Int. J. Eng. Sci. 42, 673–689 (2004)

    Article  Google Scholar 

  3. Pang, Y., Liu, J., Wang, Y., et al.: Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech. Solida Sinica 21, 483–490 (2008)

    Article  Google Scholar 

  4. Li, F.M., Wang, Y.S.: Study on wave localization in disordered periodic layered piezoelectric composite structures. Int. J. Solids. Struct. 42, 6457–6474 (2005)

    Article  MATH  Google Scholar 

  5. Golub, M.V., Fomenko, S.I., Bui, T.Q., et al.: Transmission and band gaps of elastic SH waves in functionally graded periodic laminates. Int. J. Solids Struct. 49, 344 (2012)

    Article  Google Scholar 

  6. Chen, A.L., Wang, Y.S., Guo, Y.F., et al.: Band structures of Fibonacci phononic quasicrystals. Solid State Commun. 145, 103–108 (2008)

    Article  Google Scholar 

  7. Gorishnyy, T., Ullal, C.K., Maldovan, M., et al.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)

    Article  Google Scholar 

  8. Gomopoulos, N., Maschke, D., Koh, C.Y., et al.: One-dimensional hypersonic phononic crystals. Nano Lett. 10, 980–984 (2010)

    Article  Google Scholar 

  9. Cleland, A.N., Schmidt, D.R., Yung, C.S.: Thermal conductance of nanostructured phononic crystals. Phys. Rev. B 64, 607–611 (2001)

    Article  Google Scholar 

  10. Parsons, L.C., Andrews, G.T.: Observation of hypersonic crystal effects in porous silicon superlattices. Appl. Phys. Lett. 95, 1–4 (2009)

    Article  Google Scholar 

  11. Her, S.C., Shiu, T.Y.: Fabrication and characterization of nanocomposite films. J. Comput. Theor. Nanosci. 9, 1741–1744 (2012)

    Article  Google Scholar 

  12. Hepplestone, S.P., Srivastava, G.P.: Hypersonic modes in nanophononic semiconductors. Phys. Rev. Lett. 101, 5938–5940 (2008)

    Article  Google Scholar 

  13. Ramprasad, R., Shi, N.: Scalability of phononic crystal heterostructures. Appl. Phys. Lett. 87, 111101–111101-3 (2005)

  14. Chen, A.L., Wang, Y.S., Ke, L.L., et al.: Wave propagation in nanoscaled periodic layered structures. J. Comput. Theor. Nanosci. 10, 2427–2437 (2013)

    Article  Google Scholar 

  15. Zhen, N., Wang, Y.S., Zhang, C.Z.: Surface/interface effect on band structures of nanosized phononic crystals. Mech. Res. Commun. 46, 81–89 (2012)

    Article  Google Scholar 

  16. Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Dordrecht (2013)

    MATH  Google Scholar 

  17. Erigen, A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2001)

    Google Scholar 

  18. Kunin, I.A.: Model of an elastic medium of simple structure with three-dimensional dispersion. J. Appl. Math. Mech. 30, 642–652 (1967)

    Article  Google Scholar 

  19. Edelen, D.G.B.: Proelastic bodies with large deformation. Archive Ration. Mech. Anal. 34, 283 (1969)

    Article  MATH  Google Scholar 

  20. Eringen, C.A.: Nonlocal continuum mechanics based on distributions. Int. J. Eng. Sci. 44, 141–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports by the National Natural Science Foundation of China (Grants 11002026, 11372039), the Beijing Natural Science Foundation (Grant 3133039), and the Scientific Research Foundation for the Returned (Grant 20121832001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Yan.

Appendix

Appendix

The matrices and vectors in Eq. (24) are as follows

$$\begin{aligned} {\varvec{\alpha }} _i= & {} \left( {{\varvec{\alpha }} _i^1 ,\hbox { }{\varvec{\alpha }} _i^2 ,\hbox { }\ldots ,\hbox { }{\varvec{\alpha }} _i^n } \right) , \end{aligned}$$
(A1)
$$\begin{aligned} {{\varvec{A}}}_i= & {} -D_i^2 \sin ^{2}\theta \cdot \left[ {\phi _i^s (\gamma _i^l )} \right] _{\left( {n-2} \right) \times n} , \end{aligned}$$
(A2)
$$\begin{aligned} {{\varvec{B}}}_i= & {} q_i \cdot \left[ {\phi _i^s (\gamma _i^l )} \right] _{\left( {n-2} \right) \times n} +D_i^2 \cdot \left[ {\phi _i^{s~{\prime }{\prime }}(\gamma _i^l )} \right] _{\left( {n-2} \right) \times n} , \end{aligned}$$
(A3)
$$\begin{aligned} {{\varvec{C}}}_i= & {} \frac{c_{Ti}^2 }{c_{T1}^2 }\cdot \left[ {\phi _i^{s~{\prime }{\prime }}(\gamma _i^l )} \right] _{\left( {n-2} \right) \times n} \hbox {, }l=2,3,\ldots ,n-1,\hbox { }s=1,2,\ldots ,n,\nonumber \\ \end{aligned}$$
(A4)
$$\begin{aligned} {{\varvec{M}}}= & {} \left[ {{\begin{array}{ll} {\left[ {{\begin{array}{ll} {\left[ {{\begin{array}{ll} {\varvec{0}}&{} {{\varvec{E}}_{n\times n} } \\ {{\varvec{C}}_1 }&{} {-{\varvec{B}}_1 } \\ \end{array} }} \right] }&{} {\hbox { }\left[ 0 \right] _{(2n-2)\times 2n} } \\ {\left[ 0 \right] _{(2n-2)\times 2n} }&{} {\hbox { }\left[ {{\begin{array}{ll} {\varvec{0}}&{} {{\varvec{E}}_{n\times n} } \\ {{\varvec{C}}_2 }&{} {-{\varvec{B}}_2 } \\ \end{array} }} \right] } \\ \end{array} }} \right] } \\ {{\begin{array}{ll} {{\begin{array}{ll} {{\begin{array}{ll} {\left[ {\exp (\hbox {i}{\varvec{k}}_x d)\phi _1^s \left( {\gamma _1^1 } \right) } \right] }&{} {\left[ 0 \right] _{1\times n} } \\ \end{array} }} \\ {{\begin{array}{ll} {\left[ {\phi _1^s \left( {\gamma _1^n } \right) } \right] }&{} {\hbox { }\left[ 0 \right] _{1\times n} } \\ \end{array} }} \\ \end{array} }}&{} {{\begin{array}{ll} {{\begin{array}{ll} {\left[ {-\phi _2^s \left( {\gamma _2^n } \right) } \right] }&{} {\left[ 0 \right] _{1\times n} } \\ \end{array} }} \\ {{\begin{array}{ll} {\left[ {-\phi _2^s \left( {\gamma _2^1 } \right) } \right] }&{} {\left[ 0 \right] _{1\times n} } \\ \end{array} }} \\ \end{array} }} \\ \end{array} }} \\ {{\begin{array}{ll} {{\begin{array}{ll} {\left[ {\exp (\hbox {i}{\varvec{k}}_x d)c_{44}^{(1)} V_1 } \right] }&{} {\hbox { }\left[ 0 \right] _{1\times n} } \\ \end{array} }}&{} {{\begin{array}{ll} {\left[ {-c_{\hbox {44}}^{\hbox {(2)}} \hbox {V}_{2} } \right] \hbox { }}&{} {\left[ \hbox {0} \right] _{{1\times n}} } \\ \end{array} }} \\ \end{array} }} \\ {{\begin{array}{ll} {{\begin{array}{ll} {\left[ {c_{44}^{(1)} J_1 } \right] }&{} {\hbox { }\left[ 0 \right] _{1\times n} } \\ \end{array} }}&{} {{\begin{array}{ll} {\left[ {-c_{44}^{(2)} J_2 } \right] \hbox { }}&{} {\left[ 0 \right] _{1\times n} } \\ \end{array} }} \\ \end{array} }} \\ \end{array} }} \right] , \end{aligned}$$
(A5)
$$\begin{aligned} {{\varvec{N}}}= & {} \left[ {{\begin{array}{ll} {\left[ {{\begin{array}{ll} {\left[ {{\begin{array}{ll} {{{\varvec{E}}}_{n\times n} }&{} \mathbf{0} \\ \mathbf{0}&{} {{\varvec{A}}_i } \\ \end{array} }} \right] }&{} {\hbox { }\left[ 0 \right] _{(2n-2)\times 2n} } \\ {\left[ 0 \right] _{(2n-2)\times 2n} }&{} {\hbox { }\left[ {{\begin{array}{ll} {{{\varvec{E}}}_{n\times n} }&{} \mathbf{0} \\ \mathbf{0}&{} {{{\varvec{A}}}_i } \\ \end{array} }} \right] } \\ \end{array} }} \right] } \\ {{\begin{array}{ll} {\left[ 0 \right] _{4\times 2n} }&{} {\hbox { }\left[ 0 \right] _{4\times 2n} } \\ \end{array} }} \\ \end{array} }} \right] , \end{aligned}$$
(A6)
$$\begin{aligned} {\varvec{V}}_1= & {} \left[ {\int _{\varOmega _1 } {\frac{1}{2D_1 }} \hbox {exp}(\frac{-\left| {\gamma _1^1 -\gamma _1 } \right| }{D})\phi _1^{s~{\prime }}(\gamma _1 )d\gamma _1 } \right] _{1\times n} ,\nonumber \\ {\varvec{V}}_2= & {} \left[ {\int _{\varOmega _2 } {\frac{1}{2D_2 }} \hbox {exp}(\frac{-\left| {\gamma _2^n -\gamma _2 } \right| }{D_2 })\phi _2^{s~{\prime }}(\gamma _2 )d\gamma _2 } \right] _{1\times n} ,\hbox { }s=1,2,\ldots ,n, \nonumber \\\end{aligned}$$
(A7)
$$\begin{aligned} {{\varvec{J}}}_1= & {} \left[ {\int _{\varOmega _1 } {\frac{1}{2D_1 }} \hbox {exp}(\frac{-\left| {\gamma _1^n -\gamma _1 } \right| }{D_1 })\phi _1^{s~{\prime }}(\gamma _1 )d\gamma _1 } \right] _{1\times n} ,\nonumber \\ {\varvec{J}}_2= & {} \left[ {\int _{\varOmega _2 } {\frac{1}{2D_2 }} \hbox {exp}(\frac{-\left| {\gamma _2^1 -\gamma _2 } \right| }{D_2 })\phi _2^{s~{\prime }}(\gamma _2 )d\gamma _2 } \right] _{1\times n} ,\hbox { }s=1,2,\ldots ,n,\nonumber \\ \end{aligned}$$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wei, C. & Zhang, C. Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method. Acta Mech. Sin. 33, 415–428 (2017). https://doi.org/10.1007/s10409-016-0617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0617-8

Keywords

Navigation