Skip to main content
Log in

Bending-induced extension in two-dimensional crystals

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of \(2\,\hbox {nm}^{-1}\) but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The energy and force convergence criteria are set at \(10^{-4}\) eV and 0.1 eV/nm, respectively. The kinetic energy cutoff for the plane wave basis set is adopted as 450 eV, which guarantees that the absolute energies converge to around 2  MeV. The reciprocal space for the unit cell of BP is meshed at \(14 \times 10 \times 1\) using Monkhorst-Pack meshes centered at the \(\varGamma \) point. For one-dimensional periodic cells, a vacuum space of 2  nm is included for all tubes and a dense k-point mesh (\(1 \times 1 \times 12\)) is used for Brillouin zone sampling. The lattice constants in all directions are fully optimized for all tubes.

  2. See supplemental material for the determination of the lengths of the outer and inner half-layers of bent BP monolayers, bending-induced asymmetrical partial charge distribution, the bending to tensile deformation in other transitional metal dichalcogenides, the influence of finite temperature on the bending deformation, and the bending rigidity of monolayered BP with fixed midplane length.

References

  1. Novoselov, K.S., Fal, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Google Scholar 

  2. Ferrari, A.C., Bonaccorso, F., Fal’Ko, V., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)

    Article  Google Scholar 

  3. Kim, K.S., Zhao, Y., Jang, H., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  4. Georgiou, T., Jalil, R., Belle, B.D., et al.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013)

    Article  Google Scholar 

  5. Jones, A.M., Yu, H., Ross, J.S., et al.: Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe\(_2\). Nat. Phys. 10, 130–134 (2014)

    Article  Google Scholar 

  6. Li, L., Yu, Y., Ye, G.J., et al.: Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014)

    Google Scholar 

  7. Pereira, V.M., Neto, A.C., Liang, H.Y., et al.: Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 105, 156603 (2010)

    Article  Google Scholar 

  8. Klimov, N.N., Jung, S., Zhu, S., et al.: Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012)

    Article  Google Scholar 

  9. Bakr, W.S., Peng, A., Tai, M.E., et al.: Probing the superfluid-to-mott insulator transition at the single-atom level. Science 329, 544–547 (2010)

    Article  Google Scholar 

  10. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  11. Bertolazzi, S., Brivio, J., Kis, A.: Stretching and breaking of ultrathin \({\rm MoS}_2\). ACS Nano 5, 9703–9709 (2011)

    Article  Google Scholar 

  12. Ma, R., Bando, Y., Sasaki, T.: Directly rolling nanosheets into nanotubes. J. Phys. Chem. B 108, 2115–2119 (2004)

    Article  Google Scholar 

  13. Liu, X., Pan, D., Hong, Y., et al.: Bending poisson effect in two-dimensional crystals. Phys. Rev. Lett. 112, 205502 (2014)

    Article  Google Scholar 

  14. Zhao, X., Liu, Y., Inoue, S., et al.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92, 125502 (2004)

    Article  Google Scholar 

  15. Anderoglu, O., Misra, A., Wang, H., et al.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008)

    Article  Google Scholar 

  16. Pan, D., Wang, T.-C., Guo, W.: Bending-induced phase transition in monolayer black phosphorus. Chin. Phys. B 24, 086401 (2015)

    Article  Google Scholar 

  17. Zólyomi, V.: Theoretical investigation of small diameter carbon nanotubes. [Ph.D. Thesis], Eötvös University, Budapest (2005)

  18. Shi, X., Peng, B., Pugno, N.M., et al.: Stretch-induced softening of bending rigidity in graphene. Appl. Phys. Lett 100, 191913 (2012)

    Article  Google Scholar 

  19. Cadelano, E., Giordano, S., Colombo, L.: Interplay between bending and stretching in carbon nanoribbons. Phys. Rev. B 81, 144105 (2010)

    Article  Google Scholar 

  20. Koskinen, P.: Electromechanics of twisted graphene nanoribbons. Appl. Phys. Lett. 99, 013105 (2011)

    Article  Google Scholar 

  21. Jiang, L., Guo, W.L.: Analytical solutions for elastic binary nanotubes of arbitray chirality. Acta. Mech. Sin. 32, 1045–1056 (2016)

    Google Scholar 

  22. Yeh, N.-C., Hsu, C.-C., Teague, M.L., et al.: Nanoscale strain engineering of graphene and graphene-based devices. Acta. Mech. Sin. 32, 497–509 (2016)

    Article  Google Scholar 

  23. Hou, J., Yin, Z., Zhang, Y., et al.: Structure dependent elastic properties of supergraphene. Acta. Mech. Sin. 32, 684–689 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

  25. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

  26. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  27. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  28. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  29. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  30. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  31. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

Download references

Acknowledgments

This project was supported by the 973 program (Grants 2012CB937500, 2013CB932604), the National Natural Science Foundation of China (Grants 51535005, 51472117, 11021262, 11172303, 11132011), and the Fundamental Research Funds for the Central Universities (Grant NP2013309). We thank X.F. Liu for helpful discussions and W.H. Tang for help in drawing some of the geometrical figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzu-Chiang Wang or Wanlin Guo.

Additional information

Douxing Pan and Yao Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 4051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Li, Y., Wang, TC. et al. Bending-induced extension in two-dimensional crystals. Acta Mech. Sin. 33, 71–76 (2017). https://doi.org/10.1007/s10409-016-0602-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0602-2

Keywords

Navigation