Skip to main content
Log in

An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane–fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell–cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell–cell distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shevkoplyas, S.S., Yoshida, T., Munn, L.L., et al.: Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77, 933–937 (2005)

    Article  Google Scholar 

  2. VanDelinder, V., Groisman, A.: Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 78, 3765–3771 (2006)

    Article  Google Scholar 

  3. Nagrath, S., Sequist, L.V., Maheswaran, S., et al.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  4. Dharmasiri, U., Witek, M.A., Adams, A.A., et al.: Microsystems for the capture of low-abundance cells. Annu. Rev. Anal. Chem. 3, 409–431 (2010)

    Article  Google Scholar 

  5. Bhagat, A.A.S., Hou, H.W., Li, L.D., et al.: Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11, 1870–1878 (2011)

    Article  Google Scholar 

  6. Inglis, D.W., Riehn, R., Austin, R.H., et al.: Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85, 5093–5095 (2004)

    Article  Google Scholar 

  7. Crowley, T.A., Pizziconi, V.: Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5, 922–929 (2005)

    Article  Google Scholar 

  8. Huh, D., Gu, W., Kamotani, Y., et al.: Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005)

    Article  Google Scholar 

  9. Han, K.H., Frazier, A.B.: Diamagnetic capture mode magnetophoretic microseparator for blood cells. J. Microelectromech. Syst. 14, 1422–1431 (2005)

    Article  Google Scholar 

  10. Han, K.H., Frazier, A.B.: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6, 265–273 (2006)

    Article  Google Scholar 

  11. Wang, M.M., Tu, E., Raymond, D.E., et al.: Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)

    Article  Google Scholar 

  12. Murata, M., Okamoto, Y., Park, Y.S., et al.: Cell separation by the combination of microfluidics and optical trapping force on a microchip. Anal. Bioanal. Chem. 394, 277–283 (2009)

    Article  Google Scholar 

  13. Wilding, P., Kricka, L.J., Cheng, J., et al.: Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Chem. 257, 95–100 (1998)

    Google Scholar 

  14. Mohamed, H., McCurdy, L.D., Szarowski, D.H., et al.: Development of a rare cell fractionation device: application for cancer detection. IEEE Trans. Nanobiosci. 3, 251–256 (2004)

    Article  Google Scholar 

  15. Pamme, N.: Continuous flow separations in microfluidic devices. Lab Chip 7, 1644–1659 (2007)

    Article  Google Scholar 

  16. Tsutsui, H., Ho, C.M.: Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36, 92–103 (2009)

    Article  MATH  Google Scholar 

  17. Yang, S., Undar, A., Zahn, J.D.: A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6, 871–880 (2006)

    Article  Google Scholar 

  18. Hou, H.W., Bhagat, A.A.S., Lee, W.C., et al.: Microfluidic devices for blood fractionation. Micromachines 2, 319–343 (2011)

    Article  Google Scholar 

  19. Choi, S., Song, S., Choi, C., et al.: Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7, 1532–1538 (2007)

    Article  Google Scholar 

  20. Bhagat, A.A.S., Bow, H., Hou, H.W., et al.: Microfluidics for cell separation. Med. Biol. Eng. Comput. 48, 999–1014 (2010)

    Article  Google Scholar 

  21. Gossett, D.R., Weaver, W.M., Mach, A.J., et al.: Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397, 3249–3267 (2010)

    Article  Google Scholar 

  22. Andersen, K.B., Levinsen, S., Svendsen, W.E., et al.: A generalized theoretical model for “continuous particle separation in a microchannel having asymmetrically arranged multiple branches”. Lab Chip 9, 1638–1639 (2009)

    Article  Google Scholar 

  23. Huang, L.R., Cox, E.C., Austin, R.H., et al.: Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004)

    Article  Google Scholar 

  24. McGrath, J., Jimenez, M., Bridle, H.: Deterministic lateral displacement for particle separation: a review. Lab Chip 14, 4139–4158 (2014)

    Article  Google Scholar 

  25. Davis, J.A., Inglis, D.W., Morton, K.J., et al.: Deterministic hydrodynamics: taking blood apart. Proc. Natl Acad. Sci. U.S.A. 103, 14779–14784 (2006)

    Article  Google Scholar 

  26. Green, J.V., Radisic, M., Murthy, S.K.: Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal. Chem. 81, 9178–9182 (2009)

    Article  Google Scholar 

  27. Morton, K.J., Loutherback, K., Inglis, D.W., et al.: Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl Acad. Sci. U.S.A. 105, 7434–7438 (2008)

    Article  Google Scholar 

  28. Morton, K.J., Loutherback, K., Inglis, D.W., et al.: Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8, 1448–1453 (2008)

  29. Zhang, J., Johnson, P.C., Popel, A.S.: Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 41, 47–55 (2008)

    Article  Google Scholar 

  30. Xu, Y.Q., Tang, X.Y., Tian, F.B., et al.: IB-LBM simulation of the haemocyte dynamics in a stenotic capillary. Comput. Methods Biomech. 17, 978–985 (2014)

  31. Wei, Q., Xu, Y.Q., Tian, F.B., et al.: IB-LBM simulation on blood cell sorting with a micro-fence structure. Biomed. Mater. Eng. 24, 475–481 (2014)

    Google Scholar 

  32. Ma, J.T., Xu, Y.Q., Tian, F.B., et al.: IB-LBM study on cell sorting by pinched flow fractionation. Biomed. Mater. Eng. 24, 2547–2554 (2014)

    Google Scholar 

  33. Krueger, T., Holmes, D., Coveney, P.V.: Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study. Biomicrofluidics 8, 054114 (2014)

    Article  Google Scholar 

  34. Chang, C.B., Huang, W.X., Lee, K.H., et al.: Optical separation of ellipsoidal particles in a uniform flow. Phys. Fluids 26, 062001 (2014)

    Article  Google Scholar 

  35. Chang, C.B., Huang, W.X., Sung, H.J.: Cross-type optical separation of elastic oblate capsules in a uniform flow. J. Appl. Phys. 117, 034701 (2015)

    Article  Google Scholar 

  36. Chang, C.B., Huang, W.X., Sung, H.J.: Migration of elastic capsules by an optical force in a uniform flow. Procedia IUTAM 16, 50–59 (2015)

    Article  Google Scholar 

  37. Quek, R., Le, D.V., Chiam, K.H.: Separation of deformable particles in deterministic lateral displacement devices. Phys. Rev. E 83, 05630 (2011)

    Article  Google Scholar 

  38. Xu, Y.Q., Tian, F.B., Deng, Y.L.: An efficient red blood cell model in the frame of IB-LBM and its application. Int. J. Biomath. 6, 1250061 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  40. Tian, F.B., Luo, H., Zhu, L., et al.: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230, 7266–7283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)

    Article  MATH  Google Scholar 

  42. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)

    Article  Google Scholar 

  44. Zhang, J., Johnson, P.C., Popel, A.: An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285–295 (2007)

    Article  Google Scholar 

  45. Pan, T.W., Wang, T.: Dynamical simulation of red blood cell rheology in microvessels. Int. J. Numer. Anal. Mod. 6, 455–473 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Sun, C., Munn, L.L.: Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophys. J. 88, 1635–1645 (2005)

    Article  Google Scholar 

  47. Inglis, D.W., Davis, J.A., Austin, R.H., et al.: Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6, 655–658 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant 81301291), the Beijing Higher Education Young Elite Teacher Project (Grant YETP1208), and UNSW Special Research Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Qing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Xu, YQ., Tang, XY. et al. An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays. Acta Mech. Sin. 32, 1023–1030 (2016). https://doi.org/10.1007/s10409-016-0566-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0566-2

Keywords

Navigation