Skip to main content
Log in

Delayed detached eddy simulations of fighter aircraft at high angle of attack

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The massively separated flows over a realistic aircraft configuration at 40\(^{\circ }\), 50\(^{\circ }\), and 60\(^{\circ }\) angles of attack are studied using the delayed detached eddy simulation (DDES). The calculations are carried out at experimental conditions corresponding to a mean aerodynamic chord-based Reynolds number of \(8.93\times 10^{5}\) and Mach number of 0.088. The influence of the grid size is investigated using two grids, \(20.0\times 10^{6}\) cells and \(31.0\times 10^{6}\) cells. At the selected conditions, the lift, drag, and pitching moment from DDES predictions agree with the experimental data better than that from the Reynolds-averaged Navier–Stokes. The effect of angle of attack on the flow structure over the general aircraft is also studied, and it is found that the dominated frequency associated with the vortex shedding process decreases with increasing angle of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nelson, R.C., Pelletier, A.: The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers. Prog. Aerosp. Sci. 39, 185–248 (2003)

    Article  Google Scholar 

  2. Erickson, G.E., Brandon, J.M.: Low-speed experimental study of the vortex flow effects of a fighter fore-body having unconventional cross-section. 12th Atmospheric Flight Mechanics Conference, AIAA Paper 19885-1798 (1985)

  3. LeMay, S., Rogers, L.: Pneumatic vortex flow control on a 55-degree cropped delta wing with chined forebody. AIAA 16th Aerodynamic Ground Testing Conference, AIAA Paper 90-1430 (1990)

  4. Fisher, D.F., Richwine, D.M., Banks, D.W.: Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model. NASA TM-100436 (1988)

  5. Del Frate, J.H., Fisher, D.F., Zuniga, F.A.: In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle. NASA TM-101726 (1990)

  6. Fisher, D.F., Banks, D.W., Richwine, D.M.: F-18 High alpha research vehicle surface pressures: initial in-flight results and correlation with flow visualization and wind tunnel data. AIAA Paper 1990-301 (1990)

  7. Alcorn, C.W., Croom, M.A., Francis, M.S., et al.: The X-31 aircraft: advances in aircraft agility and performance. Prog. Aerosp. Sci. 32, 377–413 (1996)

  8. Ravi, R., Mason, W.H.: A computational examination of directional stability for smooth and chined forebodies at high-\(\alpha \). NASA CR-4465 (1992)

  9. Agosta Greenman, R.M., Gee, K., Cummings, R.M., et al.: Computational investigation of tangential slot blowing generic chined forebody. J. Aircr. 32, 811–817 (1995)

  10. Degani, D., Schiff, L.B.: Computation of turbulent flows around pointed bodies having crossflow separation. J. Comput. Phys. 66, 173–196 (1986)

    Article  MATH  Google Scholar 

  11. Gee, K., Cummings, R.M., Schiff, L.B.: Turbulence model effects on separated flow about a prolate spheroid. AIAA J. 30, 655–664 (1992)

  12. Mariani, Dacles: J., Zilliac, G.G., Chow, J.S., et al.: Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 33, 1561–1568 (1995)

    Article  Google Scholar 

  13. Spalart, P.R., Jou, W.H., Strelets, M., et al.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES, Greyden Press, Columbus, pp. 137–147 (1997)

  14. Forsythe, J.R., Squires, K.D., Wurtzler, K.E., et al.: Detached eddy simulation of fighter aircraft at high alpha. AIAA paper, 2002-0591 (2002)

  15. Forsyth, James R., Squires, Kyle D., Wurtzler, Kenneth E., et al.: Detached-eddy simulation of the F-15E at high alpha. J. Aircr. 41, 193–200 (2004)

    Article  Google Scholar 

  16. Forsythe, James R., Woodson, Shawn H.: Unsteady computations of abrupt wing stall using detached-eddy simulation. J. Aircr. 42, 606–616 (2005)

    Article  Google Scholar 

  17. Morton, S.A., Steenman, M.B., Cummings, R.M., et al.: DES grid resolution issues for vortical flows on a delta wing and an F-18C. AIAA paper 2003-1103 (2003)

  18. Morton, S.A., Cummings, R.M., Kholodar, D.B.: High resolution turbulence treatment of F/A-18 tail buffet. J. Aircr. 44, 1769–1775 (2007)

    Article  Google Scholar 

  19. Menter, F.R., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: McCallen, R., Browand, F., Ross, J. (eds.) Symposium on “The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains.” Monterey, USA, 2–6 Dec Springer, Heidelberg (2004)

  20. Spalart, P.R., Deck, S., Shur, M., et al.: A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  21. Jeans, T.L., McDaniel, D.R., Cummings, R.M., et al.: Aerodynamic analysis of a generic fighter with a chinefuselage/delta wing configuration using delayed detached-eddy simulation. AIAA Paper 2008-6228 (2008)

  22. Jeans, T.L., McDaniel, D.R., Cummings, R.M., et al.: Aerodynamic analysis of a generic fighter using delayed detached-eddy simulation. J. Aircr. 46, 1326–81339 (2009)

  23. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  24. Strelets, M.: Detached eddy simulation of massively separated flows. AIAA Paper 2001-0879 (2001)

  25. Menter, F.R., Kuntz, M.: A zonal SST-DES formulation. DES workshop, St. Petersburg, Russia (2003)

  26. Kravchenkoa, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re\(_{D}=3900\). Phys. Fluids 12, 403–417 (2000)

    Article  MATH  Google Scholar 

  27. Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil. AIAA paper 2001-2559 (2001)

  28. Jameson, A., et al.: Numerical solutions of euler equations by finite volume methods with Runge-kutta time stepping schemes. AIAA 1981-1259 (1981)

  29. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995)

    Article  MATH  Google Scholar 

  30. Yoon, S., Jameson, A.: An LU-SSOR scheme for the Euler and Navier–Stokes equations. AIAA paper 1987-6000 (1987)

  31. Roe, P.L.: Approximate Riemann solver, parameter vectors, and difference schemes. J. Comput. Phys. 43, 7–372 (1981)

    Article  MathSciNet  Google Scholar 

  32. Xiao, Z.X., Liu, J., Huang, J.B., et al.: Numerical dissipation effect on the massive separation around tandem cylinders. AIAA J. 50, 1119–1136 (2012)

    Article  Google Scholar 

  33. Xiao, Z.X., Liu, J., Luo, K.Y., et al.: Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches. AIAA J. 51, 107–125 (2013)

  34. Bellot Comte, G., Corrsin, S.: Simple Eulerian time correlation of full and narrow band velocity signals in grid generated ‘isotropic’ turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  35. Swalwell, K.E., Sheridan, J., Melbourne, W.H.: Frequency analysis of surface pressure on an airfoil after stall. AIAA Paper 2003-3416 (2003)

  36. Jeong, J., Hussain, F.: On the identication of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simpson, R.L., Ghodbane, M., McGrath, B.E.: Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167–186 (1987)

    Article  Google Scholar 

  38. Simony, F., Decky, S., Guilleny, P., et al.: RANS-LES Simulations of supersonic base flow. AIAA Paper 2006-898 (2006)

Download references

Acknowledgments

This paper was supported by National Natural Science Foundation of China (Grant 11302245). The authors have been benefited from discussions with Prof. Song Fu and Associated Prof. Zhixiang Xiao of Tsinghua University. Dr. Zhitao Liu and Dr. Haiyou Zhang provided the experimental data and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Jiang, X. & Liu, G. Delayed detached eddy simulations of fighter aircraft at high angle of attack. Acta Mech. Sin. 32, 588–603 (2016). https://doi.org/10.1007/s10409-016-0565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0565-3

Keywords

Navigation