Skip to main content
Log in

Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wan, J., Bick, A., Sullivan, M., et al.: Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles. Adv. Mater. 20, 3314–3318 (2008). doi:10.1002/adma.200800628

    Article  Google Scholar 

  2. Liu, Z.-M., Pang, Y.: Effect of the size and pressure on the modified viscosity of water in microchannels. Acta Mech. Sin. 31, 45–52 (2015). doi:10.1007/s10409-015-0015-7

    Article  MathSciNet  Google Scholar 

  3. Hashimoto, M., Shevkoplyas, S.S., Zasonska, B., et al.: Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4, 1795–1805 (2008). doi:10.1002/smll.200800591

    Article  Google Scholar 

  4. Zeng, S., Liu, X., Xie, H., et al.: Basic technologies for droplet microfluidics. Top Curr. Chem. 304, 69–90 (2011). doi:10.1007/128_2011_149

    Article  Google Scholar 

  5. Liu, Z., Cao, R., Pang, Y., et al.: The influence of channel intersection angle on droplets coalescence process. Exp. Fluids 56, 24 (2015). doi:10.1007/s00348-015-1901-2

    Article  Google Scholar 

  6. Tarchichi, N., Chollet, F., Manceau, J.-F.: New regime of droplet generation in a T-shape microfluidic junction. Microfluid. Nanofluidics 14, 45–51 (2012). doi:10.1007/s10404-012-1021-8

    Article  Google Scholar 

  7. Garstecki, P., Fuerstman, M.J., Stone, H.A., et al.: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip. 6, 437–446 (2006). doi:10.1039/b510841a

    Article  Google Scholar 

  8. Christopher, G.F., Noharuddin, N.N., Taylor, J.A., et al.: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78, 036317 (2008). doi:10.1103/PhysRevE.78.036317

    Article  Google Scholar 

  9. De Menech, M., Garstecki, P., Jousse, F., et al.: Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595, 141–161 (2008). doi:10.1017/s002211200700910x

    Article  MATH  Google Scholar 

  10. Thorsen, T., Roberts, R.W., Arnold, F.H., et al.: Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001). doi:10.1103/PhysRevLett.86.4163

  11. Liu, H., Zhang, Y.: Droplet formation in a T-shaped microfluidic junction. J. Appl. Phys. 106, 034906 (2009). doi:10.1063/1.3187831

    Article  Google Scholar 

  12. Adzima, B.J., Velankar, S.S.: Pressure drops for droplet flows in microfluidic channels. J. Micromech. Microeng. 16, 1504–1510 (2006). doi:10.1088/0960-1317/16/8/010

    Article  Google Scholar 

  13. Gupta, A., Kumar, R.: Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys. Fluids 22, 122001 (2010). doi:10.1063/1.3523483

    Article  Google Scholar 

  14. Baroud, C.N., Gallaire, F., Dangla, R.: Dynamics of microfluidic droplets. Lab Chip. 10, 2032–2045 (2010). doi:10.1039/c001191f

    Article  Google Scholar 

  15. Wang, F.C., Feng, J.T., Zhao, Y.P.: The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling. J. Colloid Interface Sci. 326, 196–200 (2008). doi:10.1016/j.jcis.2008.07.002

    Article  Google Scholar 

  16. Sivasamy, J., Wong, T.-N., Nguyen, N.-T., et al.: An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid. Nanofluidics. 11, 1–10 (2011). doi:10.1007/s10404-011-0767-8

    Article  Google Scholar 

  17. Vanapalli, S.A., Banpurkar, A.G., van den Ende, D., et al.: Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip. 9, 982–990 (2009). doi:10.1039/b815002h

    Article  Google Scholar 

  18. Fuerstman, M.J., Lai, A., Thurlow, M.E., et al.: The pressure drop along rectangular microchannels containing bubbles. Lab Chip. 7, 1479–1489 (2007). doi:10.1039/b706549c

    Article  Google Scholar 

  19. Bico, J., Quéré, D.: Falling slugs. J. Colloid Interface Sci. 243, 262–264 (2001). doi:10.1006/jcis.2001.7891

    Article  MATH  Google Scholar 

  20. Ody, C.P., Baroud, C.N., de Langre, E.: Transport of wetting liquid plugs in bifurcating microfluidic channels. J Colloid Interface Sci. 308, 231–238 (2007). doi:10.1016/j.jcis.2006.12.018

    Article  Google Scholar 

  21. Pang, Y., Kim, H., Liu, Z., et al.: A soft microchannel decreases polydispersity of droplet generation. Lab Chip. 14, 4029–4034 (2014). doi:10.1039/c4lc00871e

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11072011 and 11572013), as well as the Doctoral Fund of Innovation of the Beijing University of Technology. We thank members of the Complex Fluids Group at Princeton University, especially Prof. Howard Stone and Dr. Hyoungsoo Kim, for many fruitful discussions and comments during the experiments conducted for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Liu, Z. & Zhao, F. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel. Acta Mech. Sin. 32, 579–587 (2016). https://doi.org/10.1007/s10409-016-0561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0561-7

Keywords

Navigation