Skip to main content
Log in

Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zell, T., Khoruts, A., Ingulli, E., et al.: Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proc. Natl. Acad. Sci. USA 98, 10805–10810 (2001)

    Article  Google Scholar 

  2. Gavin, M.A., Torgerson, T.R., Houston, E., et al.: Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103, 6659–6664 (2006)

  3. Gao, J., Yin, X.F., Fang, Z.L.: Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004)

  4. Sims, C.E., Allbritton, N.L.: Analysis of single mammalian cells on-chip. Lab Chip 7, 423–440 (2007)

    Article  Google Scholar 

  5. Chen, Q.S., Wu, J., Zhang, Y.D., et al.: Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12, 5180–5185 (2012)

    Article  Google Scholar 

  6. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  Google Scholar 

  7. Arai, Y., Yasuda, R., Akashi, K.I., et al.: Tying amoleculark not with optical tweezers. Nature 399, 446–448 (1999)

    Article  Google Scholar 

  8. Fiedler, S., Shirley, S.G., Schnelle, T., et al.: Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998)

    Article  Google Scholar 

  9. Wu, L.Q., Yung, L.Y.L., Lim, K.M.: Cell trapping and detection by dielectrophoresis with SU-8 grooves. World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings 39, 305 (2013)

  10. Gijs, M.A.M.: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid. Nanofluid. 1, 22–40 (2004)

    Google Scholar 

  11. Evander, M., Johansson, L., Lilliehorn, T., et al.: Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal. Chem. 79, 2984–2991 (2007)

    Article  Google Scholar 

  12. Petersson, F., Aberg, L., Swa1rd-Nilsson, A.M.: Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79, 5117–5123 (2007)

  13. Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501–523 (1934)

    Article  Google Scholar 

  14. Johann, R.M.: Cell trapping in microfluidic chips. Anal. Bioanal. Chem. 85, 408–412 (2006)

    Article  Google Scholar 

  15. Tan, W.H., Takeuchi, S.: A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. USA 104, 1146–1151 (2007)

    Article  Google Scholar 

  16. Kumano, I., Hosoda, K., Suzuki, H., et al.: Hydrodynamic trapping of tetrahymena thermophila for the long-term monitoring of cell behaviors. Lab Chip 12, 3451–3457 (2012)

    Article  Google Scholar 

  17. Carlo, D.D., Aghdam, N., Lee, L.P.: Article previous article next article table of contents single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006)

    Article  Google Scholar 

  18. Tanyeri, M., Johnson-Chavarria, E.M., Schroeder, C.M.: Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96, 22410 (2010)

    Article  Google Scholar 

  19. Tanyeri, M., Ranka, M., Sittipolkul, N., et al.: A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11, 1786–1794 (2011)

    Article  Google Scholar 

  20. Lutz, B.R., Chen, J., Schwartz, D.T.: Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78, 5429–5435 (2006)

    Article  Google Scholar 

  21. Lin, C.M., Lai, Y.S., Liu, H.P., et al.: Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 80, 8937–8945 (2008)

    Article  Google Scholar 

  22. Li, Y.J., Li, Y.Z., Cao, T., et al.: Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion. J. Biomech. Eng. 135, 12011 (2013)

    Google Scholar 

  23. Usami, S., Chen, H.H., Zhao, Y., et al.: Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21, 77–83 (1993)

    Article  Google Scholar 

  24. Qin, K.R., Hu, X.Q., Liu, Z.R.: Analysis of pulsatile flow in the parallel-plate flow chamber with spatial shear stress gradient. J. Hydrodyn. Ser B 19, 113–120 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11172060 and 31370948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairong Qin.

Additional information

Miao Yu and Zongzheng Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 14173 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Chen, Z., Xiang, C. et al. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier. Acta Mech. Sin. 32, 422–429 (2016). https://doi.org/10.1007/s10409-016-0558-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0558-2

Keywords

Navigation