Skip to main content
Log in

SIF-based fracture criterion for interface cracks

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e., \(\hat{K}\) and \(s^{-\mathrm{i}\varepsilon }\), so that \(K=\hat{K}s^{-\mathrm{i}\varepsilon }, s\) is a characteristic length and \(\varepsilon \) is the oscillatory index. \(\hat{K}\) has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with \(\hat{K}\), as Irwin (ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack, it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor (SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. ASME J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  2. Williams, M.L.: The stresses around a fault or crack in dissimilar media. Bull. Seismol. Soc. Am. 49, 199–204 (1959)

    MathSciNet  Google Scholar 

  3. England, A.H.: A crack between dissimilar media. ASME J. Appl. Mech. 32, 400–402 (1965)

    Article  Google Scholar 

  4. Rice, J.R., Sih, G.C.: Plane problems of cracks in dissimilar media. ASME J. Appl. Mech. 32, 418–423 (1965)

    Article  Google Scholar 

  5. Rice, J.R.: Elastic fracture mechanics concepts for interfacial cracks. ASME J. Appl. Mech. 55, 98–103 (1988)

    Article  Google Scholar 

  6. Suo, Z.G.: Mechanics of interface fracture. Ph.D. thesis, Harvard University (1989)

  7. Hutchinson, J.W., Suo, Z.G.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991)

  8. Yuuki, R., Xu, J.Q.: Stress based criterion for an interface crack kinking out of the interface in dissimilar materials. Eng. Fract. Mech. 41, 635–644 (1992)

    Article  Google Scholar 

  9. Yuuki, R., Liu, J.-Q., Xu, J.-Q., et al.: Mixed mode fracture criteria for an interface crack. Eng. Fract. Mech. 47, 367–377 (1994)

    Article  Google Scholar 

  10. Cai, X.J., Xu, J.Q.: Interfacial fracture criteria based on the nominal deformation energy of interface. Int. J. Frac. Mech. 75, 16–21 (2015)

    Google Scholar 

  11. Banks-Sills, L.: Interface fracture mechanics: Theory and experiment. Int. J. Fract. 191, 131–146 (2015)

    Article  Google Scholar 

  12. Malyshev, B.M., Salganik, R.L.: The strength of adhesive joint using the theory of crack. Int. J. Frac. Mech. 5, 114–128 (1965)

    Google Scholar 

  13. Liechti, X.M., Chai, Y.S.: Asymmetric shielding in interfacial fracture under in-plane shear. ASME J. Appl. Mech. 59, 296–304 (1992)

    Article  Google Scholar 

  14. Rice, J.R.: A path independent integral and approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support of the National Natural Science Foundation of China (Grant 11572226). The author wishes to thank Professor Tianjian Lu of Xi’an Jiaotong University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Ji.

Appendices

Appendix 1

The criterion for mixed mode based on the energy release rate for an interface crack is

$$\begin{aligned} \left( {\frac{G_\mathrm{I} }{G_\mathrm{IC} }} \right) +\left( {\frac{G_\mathrm{II}}{G_\mathrm{IIC} }} \right) =1, \end{aligned}$$
(35)

therefore,

$$\begin{aligned} G_\mathrm{I} =G_\mathrm{IC} - G_\mathrm{IC} \frac{G_\mathrm{II}}{G_\mathrm{IIC}}. \end{aligned}$$
(36)

Since

$$\begin{aligned} \tan \hat{\psi }=\frac{\hat{K}_\mathrm{QII}}{\hat{K}_\mathrm{QI}}, \end{aligned}$$
(37)

we have

$$\begin{aligned} \tan ^{2}\hat{\psi }=\frac{G_\mathrm{II}}{G_\mathrm{I}}, \end{aligned}$$
(38)

and

$$\begin{aligned} G\left( {\hat{\psi }} \right) =G_\mathrm{I} +G_\mathrm{II} =G_\mathrm{I} \left( {1+\tan ^{2}\hat{\psi }} \right) . \end{aligned}$$
(39)

Substitute Eq. (36) into Eq. (39),

$$\begin{aligned} G\left( {\hat{\psi }} \right) =G_\mathrm{IC} \left( {1-\frac{G_\mathrm{II} }{G_\mathrm{IIC} }} \right) \left( {1+\tan ^{2}\hat{\psi }} \right) , \end{aligned}$$
(40)

then, Eq. (40) may be simplified to the criterion based on the energy release rate as follows,

$$\begin{aligned} G\left( {\hat{\psi }} \right) =\frac{G_\mathrm{IC} \left( {1+\tan ^{2}\hat{\psi }} \right) }{1+(G_{\mathrm{IC}} /G_{\mathrm{IIC}} )\tan ^{2}\hat{\psi }}. \end{aligned}$$
(41)

Appendix 2

In addition, Liechti and Chai [13] measured the critical interface toughness with a plane strain specimen as showed in the insert of Fig. 1. The problem associated with the interface crack in this specimen has been solved analytically by Rice [14]. The solution is

$$\begin{aligned}&K_1 +\mathrm{i}K_2\nonumber \\&\quad =\frac{\sqrt{2}\mu _1 \mu _2 h^{-1/{2-\mathrm{i}\varepsilon }}\mathrm{e}^{\mathrm{i}\omega }\left( {cV+\mathrm{i}U} \right) }{\left( {1-\beta ^{2}} \right) ^{1/2}\left( {\mu _1 +\mu _2 } \right) ^{1/2}\left[ {\mu _1 \left( {1-\nu _2 } \right) +\mu _2 \left( {1-\nu _1 } \right) } \right] ^{1/2}},\nonumber \\ \end{aligned}$$
(42)

where

$$\begin{aligned} c=\left\{ {\frac{2\left( {\mu _1 +\mu _2 } \right) }{\mu _1 \left[ {{\left( {1-2\nu _2 } \right) }/{\left( {1-\nu _2 } \right) }} \right] +\mu _2 \left[ {{\left( {1-2\nu _1 } \right) }/{\left( {1-\nu _1 } \right) }} \right] }} \right\} ,\nonumber \\ \end{aligned}$$
(43)

for this specimen system, \(\omega =16^{\circ }\) and \(\varepsilon =0.06\).

The phase angle \(\psi \) is defined as

$$\begin{aligned} \psi =\tan ^{-1}\left[ {\frac{\hbox {Im}\left( {Kl^{\mathrm{i}\varepsilon }} \right) }{\hbox {Re}\left( {Kl^{\mathrm{i}\varepsilon }} \right) }} \right] , \end{aligned}$$
(44)

where

$$\begin{aligned} Kl^{\mathrm{i}\varepsilon }=\frac{\sqrt{2}\mu _1 \mu _2 h^{-1/2}\left( {l/h} \right) ^{\mathrm{i}\varepsilon }\mathrm{e}^{\mathrm{i}\omega }\left( {cV+\mathrm{i}U} \right) }{\left( {1-\beta ^{2}} \right) ^{1/2}\left( {\mu _1 +\mu _2 } \right) ^{1/2}\left[ {\mu _1 \left( {1-\nu _2 } \right) +\mu _2 \left( {1-\nu _1 } \right) } \right] ^{1/2}}.\nonumber \\ \end{aligned}$$
(45)

The phase angle \(\psi \) is given in Sect. 4 of Ref. [7], as

$$\begin{aligned} \psi =\gamma +\omega +\varepsilon \ln \left( {l/h} \right) , \end{aligned}$$
(46)

where

$$\begin{aligned} \gamma =\tan ^{-1}\left[ {U/{(cV)}} \right] . \end{aligned}$$
(47)

In the present paper,

$$\begin{aligned} \hat{K}_\mathrm{QI}= & {} \frac{\sqrt{2}\mu _1 \mu _2 h^{-1/2}\left( {cV} \right) \hbox {Re}\left( {\mathrm{e}^{\mathrm{i}\omega }} \right) }{\left( {1-\beta ^{2}} \right) ^{1/2}\left( {\mu _1 +\mu _2 } \right) ^{1/2}\left[ {\mu _1 \left( {1-\nu _2 } \right) +\mu _2 \left( {1-\nu _1 } \right) } \right] ^{1/2}},\end{aligned}$$
(48)
$$\begin{aligned} \hat{K}_\mathrm{QII}= & {} \frac{\sqrt{2}\mu _1 \mu _2 h^{-1/2}\left( U \right) \hbox {Im}\left( {\mathrm{e}^{\mathrm{i}\omega }} \right) }{\left( {1-\beta ^{2}} \right) ^{1/2}\left( {\mu _1 +\mu _2 } \right) ^{1/2}\left[ {\mu _1 \left( {1-\nu _2 } \right) +\mu _2 \left( {1-\nu _1 } \right) } \right] ^{1/2}},\nonumber \\ \end{aligned}$$
(49)

and the phase angle \(\hat{\psi }\) is defined as

$$\begin{aligned} \hat{\psi }=\tan ^{-1}\left( {\frac{\hat{K}_\mathrm{QII} }{\hat{K}_\mathrm{QI} }} \right) . \end{aligned}$$
(50)

From Eqs. (49)–(51), we have

$$\begin{aligned} \hat{\psi }=\gamma +\omega . \end{aligned}$$
(51)

It follows that

$$\begin{aligned} \hat{\psi }=\psi -\varepsilon \ln \left( {l/h} \right) . \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X. SIF-based fracture criterion for interface cracks. Acta Mech. Sin. 32, 491–496 (2016). https://doi.org/10.1007/s10409-015-0551-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0551-1

Keywords

Navigation