Skip to main content
Log in

Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Materials with a negative Poisson’s ratio (PR) are called auxetics; they are characterized by expansion/contraction when tensioned/compressed. Given this counterintuitive behavior, they present very particular characteristics and mechanical behavior. Geometrical models have been developed to justify and artificially reproduce such materials’ auxetic behavior. The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters. It is shown that, even in the presence of protruding ribs, there may not be auxetic behavior, and this depends on the geometry of each reentrant structure. Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carneiro, V.H., Puga, H., Meireles, J.: Auxetic materials—a review. Mater. Sci. Pol. 31, 561–571 (2013)

    Article  Google Scholar 

  2. Mott, P.H., Roland, C.M.: Limits to Poisson’s ratio in isotropic materials—general results for arbitrary deformation. Phys. Scr. 87, 055404 (2013)

    Article  Google Scholar 

  3. Strek, T., Maruszewski, B., Narijczyk, J.W., et al.: Finite element analysis of plate deformation. J. Non-cryst. Solids 354, 4475–4480 (2008)

    Article  Google Scholar 

  4. Norris, A.N.: Extreme values of Poisson’s ratio and other engineering moduli in anisotropic materials. J. Mech. Mater. Struct. 1, 793–812 (2006)

    Article  Google Scholar 

  5. Dirrenberger, J., Forest, S., Jeulin, D.: Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61 (2012)

    Article  Google Scholar 

  6. Brańka, A.C., Heyes, D.M.: Maćkowiak, Sz, et al.: Cubic materials in different auxetic regions–linking microscopic to macroscopic formulations. Phys. Status Solidi B 249, 1373–1378 (2012)

    Article  Google Scholar 

  7. Critchley, R., Corni, I., Wharton, J.A., et al.: A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys. Status Solidi B 250, 1963–1982 (2013)

    Google Scholar 

  8. Liu, Y., Hu, H.: A review in auxetic structures and polymeric materials. Sci. Res. Essays 5, 1052–1063 (2010)

    Google Scholar 

  9. Bückmann, T., Schittny, R., Thiel, M., et al.: On three-dimensional dilational elastic metamaterials. N. J. Phys. 16, 033032 (2014)

    Article  Google Scholar 

  10. Pozniak, A.A., Smardzewski, J., Wojciechowski, K.W.: Computer simulations of auxetic foams in two-dimensions. Smart Mater. Struct. 22, 084009 (2013)

    Article  Google Scholar 

  11. Fan, H.-L., Zeng, T., Fang, D.-N., et al.: Mechanics of advanced fiber reinforced lattice composites. Acta Mech. Sin. 26, 825–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, D.X., Zheng, Q.S., Gao, Y.X.: Consistency between independence theorems and generalized self-consistent method. Acta Mech. Sin. 13, 355–365 (1997)

  13. Jasiuk, I., Chen, J., Thorpe, M.F.: Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev. 47, 18–28 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. H. Carneiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, V.H., Puga, H. & Meireles, J. Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements. Acta Mech. Sin. 32, 295–300 (2016). https://doi.org/10.1007/s10409-015-0534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0534-2

Keywords

Navigation